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Abstract

Task duplication has been widely adopted to mitigate the impact of stragglers that run much longer than normal tasks. However,
task duplication on data pipelining case would generate excessive traffic over the datacenter networks. In this paper, we study min⁃
imizing the traffic cost for data pipelining task replications and design a controller that chooses the data generated by the first fin⁃
ished task and discards data generated later by other replications belonging to the same task. Each task replication communicates
with the controller when it finishes a data processing, which causes additional network overhead. Hence, we try to reduce the net⁃
work overhead and make a trade⁃off between the delay of data block and the network overhead. Finally, extensive simulation re⁃
sults demonstrate that our proposal can minimize network traffic cost under data pipelining case.
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1 Introduction
riven by technology and economies of scale, cloud
computing platforms are becoming the main⁃
stream hosting platform for a variety of infrastruc⁃
ture services and data intensive applications [1].

With the development of cloud computing, large scale data
computing has gained widespread attention due to its ability to
automatically parallelize a job into multiple short tasks, and
transparently deal with the challenge of executing these tasks
in a distributed setting. The crux is that the execution time of a
task is variable. The tasks on the slowest machines (stragglers)
become the bottleneck in the completion of a job. Straggler mit⁃
igation has received considerable attention across prior studies
[2], [3]. Launching copies for the slower tasks is the dominant
technique to mitigate the stragglers. A fundamental limitation
is that traditional techniques for straggler mitigation do not
take into account of network traffic in the pipelining case.
While this approach of replicating tasks decreases task comple⁃
tion time, it may increase network traffic. The wide area net⁃
work (WAN) that connects geographically distributed ma⁃
chines is one of the most critical and expensive infrastructures
that costs hundreds of millions of dollars annually [4].

Thus, providing traffic awareness for pipelining task duplica⁃
tions is essential for big data processing applications in cloud.
To the best of our knowledge, however, no existing work is in
place to respect the network traffic in the pipelining case. We
seek for a mechanism to minimize the network traffic cost by

coordinating task duplication and pipelined intermediate data.
In this paper, we introduce a controller to manage task dupli⁃

cations. Every task duplication has a communication link with
the controller. To reduce network traffic, the controller picks
the first finished task output from a duplication and discards
the subsequent data generated later by other duplications.
Each task duplication produces a large number of key ⁃ value
pairs for pipelining data records. The communication between
controller and each duplication will greatly increase the net⁃
work overhead. To solve this problem, we propose an online
distributed algorithm which is executed by each task duplica⁃
tion. The algorithm makes a rule to group data records and
transmit the group instead of transmitting one data record at a
time. This solution helps reduce the communication times with
the controller, but may cause delay. We thus make a trade⁃off
between the transmitting delay and communication overhead.

The remainder of the paper is structured as follows. Section
2 reviews the parallel computing and related work. Section 3
describes the motivation and challenges of the proposed work.
Section 4 gives an overview of our system model and formu⁃
lates the network traffic minimization problem. Section 5 intro⁃
duces online distributed algorithms. Section 6 demonstrates
the performance evaluation results. Finally, section 7 con⁃
cludes this work.

2 Background and Related Work
MapReduce [5] has emerged as the most popular program⁃
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ming framework for big data processing in cloud. Ever since it
was introduced by Google, the MapReduce programming mod⁃
el has gained in popularity, thanks to its simple, yet versatile
interface. The paradigm has also been implemented by the
open source community through the Hadoop project [6], main⁃
tained by the Apache Foundation. MapReduce divides a com⁃
puting job into two main phases, namely map and reduce,
which in turn are carried out by several map tasks and reduce
tasks. The intermediate data transmission process from map
task to reduce task is referred to as shuffling. We use a typical
MapReduce job to show how the model works. As shown in
Fig. 1, several map tasks are executed at the same time. The
generated intermediate results in forms of key⁃value pairs are
stored in local storage. To simplify fault tolerance, MapReduce
materializes the output of each map before it can be consumed.
A reduce task cannot fetch the output of a task until the map
has finished executing and committed its final output to disk.

A fundamental limitation of MapReduce is that the interme⁃
diate data is materialized. Storing intermediate data on the lo⁃
cal disk impacts MapReduce’s performance. Thus, optimizing
the intermediate data management is a popular topic in indus⁃
try and academic research. In order to improve shuffling perfor⁃
mance, a modified MapReduce architecture is proposed, Ma⁃
pReduce Online, in which intermediate data is pipelined be⁃
tween operators [7]. When a map task generates a key ⁃ value
pair, it immediately sends this key⁃value pair to corresponding
reduce task, avoiding intermediate data storage. More⁃ over, af⁃
ter receiving key⁃value pairs, reduce tasks can start data pro⁃
cessing earlier, without waiting map tasks to finish. Pipelining
intermediate data improves system utilization.

The technique of replicating tasks has been widely applied
in parallel computing by system designers [8].

By adopting task duplication, the distributed computing sys⁃
tems achieve predictable performance. Several large scale ap⁃
plications use the technique of task duplication to mitigate
stragglers, such as Longest Approximate Time to End (LATE)
[9], Dryad in Microsoft [10] and Mantri [11]. When the fastest
task finishes, its output will be stored and then other running
task copies will be killed. The original MapReduce paper han⁃
dles the stragglers by adopting backup tasks.

However, the traditional techniques of straggler mitigation
causes excessive network traffic when the pipelining case is
used for them. Replicating tasks in large scale applications has
a long history [12], [13] with extensive studies in prior work.
However, these studies are not applicable in the pipelining
case. For example, we suppose that multiple task copies are
launched for a map task with pipelined intermediate data.
Whichever task copy produces intermediate data, the reduce
task will receive the data, even though it has received the data
from other task copy already, which generates huge data trans⁃
mission in the shuffling process. The most important difference
among our work and the related work is that our proposed
method respects the network traffic. Since the limited band⁃
width shared by multiple applications, the redundant data
transmission would congest the network and bring negative per⁃
formance for cloud computing applications. To fill in this gap,
we take a stab at task duplication for pipelining data transfer.

3 Motivation
Here, we illustrate the value of task duplication in the pipe⁃

lining case and give a reasonable solution.
When big data processing is executed on cloud, these jobs

consist of many parallel tasks. Every task is executed in paral⁃
lel on different machines. In our proposed work, there is a con⁃
troller to manage the execution of each task replication. In the
same way, every task replication runs in parallel on different
machines. The controller will receive a notification when a ma⁃
chine finishes its assigned task, and then choose the first fin⁃
ished task to transmit the data. The data generated by other
task replications will be discarded after the controller decides
one of the task replications to transmit the data records. By
adopting this method, the overlapping data will not be transmit⁃
ted, which minimizes the network traffic cost generated by
same duplications. As shown in Fig. 2, multiple task copies
are launched for one of the map task, i.e. M_c1, M_c2 and
M_cn. Each task copy produces the key⁃value pair in a differ⁃
ent time. The controller will pick the fastest one for the input
of the reduce task.

However, another crucial factor should be taken into ac⁃
count. The machine executing a task replication will communi⁃
cate with the controller after the task replication generates a

▲Figure 1. The MapReduce model.
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set of data records. The same task replications will generate
great numbers of data records in big data processing. The com⁃
munication between the controller and task replications greatly
increases the network overhead. Let cc be the cost caused by
the communication.

To reduce the cost generated by huge communication, we
make a rule to transmit the group of key⁃value pairs instead of
transmitting one key⁃value pair. Similarly, the controller choos⁃
es the first finished the data block group to transmit and dis⁃
cards the data block group generated by other task replica⁃
tions. The challenge is to determine how many key⁃value pairs
should be grouped together. How to divide the data block into
groups will be discussed in section 5.

The delay, another crucial fact needed to take into consider⁃
ation, arises from transmitting the data block group. The data
block is not transmitted immediately when it was been generat⁃
ed. If too many key⁃value pairs are grouped, the data receiving
at the next task may have a large delay that seriously slows
down the data processing. Otherwise there is a big communica⁃
tion overhead with the controller, almost same with the scheme
without grouping. Similarly, the delay causes cost. Let
minæ

è
ç

ö
ø
÷cc +σ∑

i

cid , be the cost caused by delay. In this paper,
we try to make a good tradeoff between cd and cc .Although the approach of combining task duplication and
pipelined intermediate data can significantly accelerate data
processing, redundant data are generated and may incur con⁃
gestion on the network. In this paper, we design a novel online
shuffling with a traffic controller to eliminate redundant data.

4 Model and Problem Formulation
The MapReduce programming model consists of two primi⁃

tives: map phrase and reduce phrase. The former phrase pro⁃
duces a set of intermediate records (key/value pairs), which are
provided as input to the reduce phrase. As a result, transmit⁃
ting the intermediate data through the network generates traffic
cost. The cost of delivering a certain amount of data over a net⁃
work link is evaluated by the product of data size and distance
between two machines.

Now we formulate the network traffic minimization problem.
All symbols and variables used in this paper are shown in Ta⁃
ble 1. We first consider the data delivering between two ma⁃
chines. Let cxy denote the traffic cost of transmitting data from
machine x ∈ M to machine y ∈ R, which can be calculated by:
cxy = vxdxy，x ∈M，y ∈R. (1)
The receiving delay cost of sending group i is cid . To make a

good tradeoff between control overhead and data receiving de⁃
lay, we attempt to minimize the following function:

minæ
è
ç

ö
ø
÷cc +σ∑

i

cid , (2)

where σ is the competitive ratio indicating the relative weight
of delay cost [14]. This problem is challenging because we
have no knowledge of generation time of key⁃value pairs in fu⁃
ture. Therefore we design an online grouping algorithm that
groups key⁃value pairs in data buffer. The detailed design will
be presented in next section.

5 Design of Online Distributed Algorithm
Our proposed online grouping algorithm makes a good trad⁃

eoff between control overhead and data receiving delay. In an
online big data processing environment, the data is pipelined
between operators. The intermediate data should be transmit⁃
ted to next phrase immediately. In our proposed work, the du⁃
plications of a task have the same output, but the time to pro⁃
duce each intermediate data record is different. By using a con⁃
troller, the task duplications can communicate with the control⁃
ler to confirm whether it transmits or discards its output data.

Another issue we need to solve is that the large number of
communication times between a task duplication and the con⁃
troller will increase the network overhead. Therefore, we pro⁃
pose an online distributed algorithm (Algorithm 1) to achieve
the transmitting group of data records.

▼Table 1. Symbols and variables

Notations
M
R
vx

cxy

cc

cit

cid

dxy

Description
A set of machines to generate intermediate data
A set of machines to receive intermediate data
Data volume of an intermediate record produced by machine x
The traffic cost from machine x ∈ M to machine y ∈ R
The cost caused by communication with the controller
The total cost of transmitting group i
The delay cost of group i
The distance between two machines x and y

Algorithm 1. Online Distributed Algorithm
1: cd ← 0, cc ← 0
2: while data processing not over do
3: if confirmation message is received then
4: remove and transmit confirmed packets from buffer
5: begin buffering new packet
6: cd ← 0, cc ← 0
7: else if cd + cc ≥ ct then8: send transmitting request
9: else10: continue buffering packets
11: recalculate cd and cc12: end if13: end while
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We consider that multiple copies are launched for a task,
and their intermediate outputs are sent to the corresponding
task. Since task copies get the same input data, they generate
the same output in the forms of key⁃value pairs. At the begin⁃
ning of Algorithm 1, we define the variables cd and cc to ind⁃
icate the delay cost of the data records in buffer and the com⁃
munication cost between task duplication and the controller,
respectively. Note that the algorithm is executed on each task
duplication. There is a buffer to store the temporary data re⁃
cords. If the task duplication receives the confirmed message
from the controller (line 3), it will remove the buffered packets
and transmit packets to next phrase (line 4). Otherwise, it will
check the sum of cd and cc , and then compare the sum with ct.
If the sum is larger than ct, it will send the transmitting request
to the controller (line 8). We set the condition (line 7) to buffer
the produced data sets into one group. The reason is that our
primary goal is to minimize network traffic, and therefore the
extra cost cannot be larger than the network traffic cost.

6 Evaluation
We conduct extensive simulations to evaluate the perfor⁃

mance of our proposed work with the following two operations.
•Only the controller manages the execution of task duplica⁃

tions to deliver the intermediate key ⁃ value pairs without
overlap.

•Each task duplication executes the proposed algorithm to re⁃
duce the network overhead. To compare with our work, the
random allocation algorithm is executed on each machine to
deliver group of data records.
To our best knowledge, we propose to mitigate task strag⁃

glers and minimize total network cost for pipelining environ⁃
ment. The intermediate data records (key/value pairs) are asso⁃
ciated with random size within [1-50], and each task has 30
task duplications in our simulations. The time of producing an
intermediate data records is randomly set within [2-6] ms. For
comparison, we also show the results of an random grouping al⁃
gorithm and the one without traffic control.

We first evaluate the performance of our proposed algorithm
by comparing with the random allocation algorithm and no
group allocation algorithm. The controller chooses the machine
that finishes its assigned task first, and then applies algorithms
to divide the intermediate data into different groups. First of
all, we tested intermediate key values’numbers of 100, 200,
300, 400, 500 and 600 for pipelining data processing output,
and set the fixed task numbers to 30. As shown in Fig. 3, al⁃
though the total cost increases as the number of key ⁃ value
pairs increase for all the cases, our proposed algorithm has
much lower increase than the other two schemes.

We then test the performance under the case of the fixed
number of intermediate key value pairs, 300. As shown in Fig.
4, the total cost shows as an increasing function of number of
tasks from 20 to 25 for all the cases. In particular, when the

number of tasks is set to 25, the total cost of our proposed algo⁃
rithm is about 5.3 × 104, while the total cost of no algorithm is
6.3 × 104, with a reduction of 25 percent. In contrast to the ran⁃
dom allocation algorithm, our proposed algorithm also has a
higher performance, because the random allocation algorithm
does not consider the data delay.

As shown in Fig. 5, we study the influence of different num⁃
ber of task duplications by increasing the number of duplica⁃
tions form 10 to 15. The results show that our proposed algo⁃
rithm always outperforms the other two schemes. That is be⁃
cause it requires only 2 times communication with the control⁃
ler after delivering a group of data records, which is much
smaller than the communication times without algorithm. More⁃
over, we make a tradeoff between the communication cost and
the data delay cost and try to minimize the total cost. However,
the random allocation algorithm does not take the data delay
cost into consideration. Therefore, the total cost of the random
allocation algorithm is much bigger than our proposed algo⁃
rithm in the same cases.

Finally, we study the performance of three schemes under
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▲Figure 3. Total cost vs. the number of key⁃value pairs.

▲Figure 4. Total cost vs. the number of tasks.
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different weights of ratio by changing its value from 0.8 to 1.4.
A small value of ratio indicates less importance of delay cost.
From Fig. 6, we observe that the total cost of the random allo⁃
cation algorithm has a sharp increase. However, the curve of
our proposed algorithm increases slowly and it still outper⁃
forms the other two schemes.

7 Conclusions
In this paper, we study the principle of the parallel comput⁃

ing frameworks in cloud. We also use the technique of task du⁃
plication and strive for a traffic awareness for online big data
processing. This approach can effectively accelerate job execu⁃
tion while avoiding redundant data transmission. To make a
good tradeoff between network overhead and data delay, we de⁃
sign an online grouping algorithm to eliminate the traffic cost
in cloud network. Finally, the performance of the proposed al⁃
gorithm is evaluated by extensive simulations.
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▲Figure 5. Total cost vs. the number of task duplications.

▲Figure 6. Total cost vs. weight of delay.
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