
D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

An OS for Internet of Everything: Early ExperienceAn OS for Internet of Everything: Early Experience
from A Smart Home Prototypefrom A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong
(Department of Computer Science, Wayne State Unversity, Detroit, MI 48201, USA)

Abstract

The proliferation of the Internet of Everything (IoE) has pulled computing to the edge of the network, such as smart homes, autono⁃
mous vehicles, robots, and so on. The operating system as the manager of the computing resources, is also facing new challenges.
For IoE systems and applications, an innovative operating system is missing to support services, collect data, and manage the
things. However, IoE applications are all around us and increasingly becoming a necessity rather than a luxury. Therefore, it is im⁃
portant that the process of configuring and adding devices to the IoE is not a complex one. The ease of installation, operation, and
maintenance of devices on the network unarguably plays an important role in the wide spread use of IoE devices in smart homes
and everywhere else. In this paper, we propose Sofie, which is a smart operating system for the IoE. We also give the design of So⁃
fie. Sofie can be implemented via different IoT systems, such as Home Assistant, openHAB, and so on. In order to implement So⁃
fie to get some early experience, we leverage Home Assistant to build a prototype for the smart home. Our work shows that Sofie
could be helpful for practitioners to better manage their IoE systems.

edge computing; IoE; smart home; operating system
Keywords

DOI: 10.3969/j.issn.1673􀆼5188.2017.04.002
http://kns.cnki.net/kcms/detail/34.1294.TN.20171016.1814.002.html, published online October 16, 2017

W

Special Topic

1 Introduction
ith the burgeoning of the Internet of Every⁃
thing (IoE), computing in our lives is shifting
from PC, mobile device, and cloud to the
things at the edge of the network [1]. More and

more data is generated as well as consumed at the edge of the
network. According to the report from Cisco Global Cloud In⁃
dex, the data produced by people, machines, and things will
reach 500 zettabytes by year 2019 [2]. Moreover, 45% of the
data contributed by the things will be stored, processed, ana⁃
lyzed, and acted upon close to, or at the edge of the network
[3]. While more devices and applications are coming out for
IoE, the operating system (OS) for IoE is still unavailable. Con⁃
ventional operating systems for PC and smart phones care
more about resource management. The application practitio⁃
ners directly use hardware resources since the hardware of a
computing platform is well⁃designed and forms a fixed environ⁃
ment. For cloud computing, a service provider will manage all
the hardware so that application practitioners only need to fo⁃
cus on the service. In this case, cloud computing OS is de⁃
signed as a service⁃oriented architecture, and various members
of the“as a Service”(aaS) family such as Software as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as a Ser⁃

vice (PaaS).
The IoE operating system should have similar functions as

traditional operating systems; however, there are several differ⁃
ences. In the IoE, similar as cloud computing, application prac⁃
titioners should not care about the hardware. However, unlike
cloud computing system that has service⁃oriented architecture,
an IoE operating system should be data ⁃oriented, considering
that most of the things are just passively collected and the re⁃
ported data are in a predefined manner. Moreover, IoE operat⁃
ing system should also be responsible for hardware manage⁃
ment like PC or smart phone operating systems. This is be⁃
cause the IoE is a highly dynamic system where devices are
added or removed frequently.

Therefore, traditional OS is not suitable for the IoE. In this
paper we introduce a smart operating system for the IoE—So⁃
fie. In Fig. 1, we compare the mobile operating system, cloud,
and Sofie. In the case of mobile device and PC, the operating
system focuses more on resource management and provides in⁃
terface for applications to access hardware resources since the
software and hardware are all fixed in a determinate machine.
When the applications want to access any hardware resource,
they can directly send a request to the operating system. On
the other hand, in the case of cloud computing, the users on
the front end might have limited information about hardware re⁃

ZTE COMMUNICATIONSZTE COMMUNICATIONS12 October 2017 Vol.15 No. 4

1

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

Special Topic

sources on the other end of the network. Therefore, the cloud
service providers should access the request and send a comput⁃
ing result back to the users in a distributed manner. For IoE,
Sofie faces new challenges [4]-[8]. Unlike the mobile, PC, and
cloud, where the hardware configuration is fixed to a certain ex⁃
tent, the things in IoE could be highly dynamic and unreliable.
Moreover, the things, which compose the back end of the para⁃
digm, usually have very limited computing resources (just pas⁃
sive report data and receive commands). To better serve the us⁃
ers on the front end, Sofie should be able to abstract the data
from the things and satisfy the front end by taking the comput⁃
ing back to Sofie, rather than forward the request to the things
on the back end.

Sofie is both data⁃oriented and things⁃oriented. The detailed
design of Sofie will be presented in the following several sec⁃
tions. In this paper, we would like to take smart homes as an
example to show how to implement Sofie in a domestic environ⁃
ment and how Sofie works to help practitioners better manage
their IoE environments.

We organize the remainder of this article as follows: In Sec⁃
tion 2, we present the design of Sofie with things management
and data management as two major functions. We further show
how Sofie looks like in a real IoE environment. We choose a
home as an environment for Sofie and present the architecture
of Sofie in Section 3. In Section 4, we review both commercial
and open source products for smart homes, and evaluate them
from different aspects. We introduce the implementation of So⁃
fie on top of Home Assistant and also show how Sofie works for
smart homes in Section 5. In Section 6 we present the lessons
learned through our work experience with smart homes. Final⁃
ly, the paper concludes in Section 7.

2 Design of Sofie
In the IoE, although there are various kinds of sensors and

devices that can produce data, they work in a passive manner
of data reporting, without adopting any action to process the da⁃
ta [9]- [11]. However, for practitioners, the generated data
could be leveraged for multipurpose use in the society. Such
utilization fields include video analysis, smart homes, smart cit⁃
ies, connected health, and more. All these fields treat data as

an indispensable ingredient. For example, data produced in a
smart home is consumed to improve the user experience for the
occupants; data captured by traffic cameras is retrieved to
track suspicious vehicles; data provided by the police depart⁃
ment or city hall is utilized to benefit the public; data collected
in connected health is used to facilitate communication among
hospitals, pharmacies, insurance companies and so on.

Given the significance of data in IoE applications and sys⁃
tems, as well as the underlying hardware, a data ⁃ driven and
thing⁃driven operating system is required in the IoE. In this pa⁃
per, we propose Sofie, which is a smart operating system for
the IoE. As shown in Fig. 2, Sofie is sitting between devices
and services, as both a service provider of the upper layer and
a hardware manager for underlying devices, to provide high
quality data through well performed things. For the IoE, Sofie
is the brain that manages data, devices, and services. For ser⁃
vice practitioners, Sofie is capable of reducing the complexity
of development by offering an abstracted data access interface.
In regard to functionality, Sofie is divided into two layers: the
things management and data management.

The general architecture design is shown in Fig. 3. On the
one hand, Sofie has the capability of maintaining all the con⁃
nected things, since most of the involved things just work pas⁃
sively to generate data, while their number is too large to be
tracked manually. On the other hand, Sofie is designed to en⁃
capsulate underlying things well, and only provide the data ac⁃
cess interface, since super⁃stratum services only care about the
data and do not need to know the low⁃ level status. In the re⁃
maining part of this session, we will introduce Sofie from the
views of things and data respectively.
2.1 Things Management

Taking control of different kinds of devices and sensors, So⁃
fie has responsibility to reduce human intervention work, and
coordinate all the devices to guarantee stable functionality and
performance. In order to support qualified performance, the
things management layer is made up of two parts: things config⁃

ZTE COMMUNICATIONSZTE COMMUNICATIONS 13October 2017 Vol.15 No. 4

OS: operating system

APPs

Req
ues

t

Frontend

▲Figure 1. Comparison of mobile operating system, cloud, and Sofie.

Figure 2.▶
Overview of Sofie.

OS
HardwareRes

ult

Req
ues

t

Res
ult

Service
Server

Back end

Network

Front end

Things
Res

ult

Req
ues

t

Dat
a

Con
trol

Sofie

Data/service
management

Sofie

Things
management

2

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

Special Topic

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

uration and things maintenance.
2.1.1 Things Configuration

Things configuration includes things registration and re⁃
placement. Although manual operation is inevitable in this
part, Sofie takes care of all the remaining work after the device
is connected to the system. When a new device is connected to
the system, Sofie searches configuration files for its available
service. Meanwhile, the identity information of a new device is
recorded for Sofie to distinguish the new added device from
other devices.

If a device dies or does not perform well, Sofie would raise a
replacement request. Before the replacement happens, a com⁃
pensation method is needed to preserve the stable performance
and avoid any service interruption or damage to the system. In
a relatively small and closed environment, suspending all ser⁃
vices related to the malfunctioning device is a practicable
method. In a relatively large and open environment, where ser⁃
vices are more complex and mature, one alternative way is as⁃
signing the tasks of the malfunctioned device to adjacent devic⁃
es temporarily. After the replacement is complete, Sofie will re⁃
store the states of the malfunctioning device to the new one, in⁃
cluding the related services or functions.
2.1.2 Things Maintenance

Given the complexity and specificity of the IoE, it is not fea⁃
sible for a human to take care of all the devices [12]- [16].
Thus, things maintenance is actually the mechanism of self ⁃
management for Sofie. When there is no human intervention,
Sofie is the dominator to coordinate all the devices and sensors.

There are several ways to monitor health status of things. In
this paper, we propose the following two techniques that will
be implemented in Section 5.The general method is life check⁃
ing. For each device connected to Sofie, a heartbeat signal is
required to be sent to the system in regular time intervals. If no
heartbeat is received from a certain device, Sofie could figure
out the device is dead or disconnected from the system, and a

relevant compensation method could be
raised. In addition to life checking, which is
seen as the regular monitoring method, some
unconventional monitoring ways would be
very helpful in extraordinary situations. For
instance, when a device keeps sending heart⁃
beats, while sending irregular data to the sys⁃
tem compared to previous records, it can be
reasonably inferred that there is something
wrong with that device. Multimodality check⁃
ing is another way to monitor the health status
of things in Sofie. It harmoniously combines
the different capabilities of connected devices
as an auxiliary means to check the possible
failure of a certain device. Smart home is one
scenario that could implement this method.

Data could be used here including video/image information re⁃
corded by cameras, temperature information recorded by tem⁃
perature sensors, sound information recorded by acoustic sen⁃
sors, etc. Correspondingly, multimodality checking could be
adopted between a camera and a light, an audio system and an
acoustic sensor, an air conditioning system and a temperature
sensor and so on. To be specific, if a light component is not op⁃
erating normally, Sofie could invoke domestic security camera
to check if the light bulb works when its service is switched to
on mode. The camera could take a picture or a short video of
the surrounding environment of the light, and send it to the sys⁃
tem for analysis. Similar to life checking process, if a device is
observed to perform poorly, relevant remedial actions will be
initiated. These actions could call neighboring devices to tem⁃
porarily share the task of the broken device, or ask for a re⁃
placement.
2.2 Data Management

As a things⁃driven and data⁃driven operating system, data is
another criterion to Sofie. Data management contains not only
data quality, but also data storage and data access.
2.2.1 Data Quality

As we discussed before, the IoE is a broad concept, includ⁃
ing different kinds of hardware that anyone can think of.
Things in it could be as small as a motion sensor, or as large as
a city. Due to the limitation of computational capacity, energy
capacity and so on, most of the things only produce data in a
passive way. Due to unstable wireless connection and volatile
environment, the IoE is fragile to some extent. Considering the
unreliable environment of the IoE, it is important that the data
is of high quality, which means the data should be valid, com⁃
plete, and timely. In general, the data quality of Sofie could be
evaluated by two criteria: history pattern and reference data.

Data easily form a certain pattern due to the periodical activ⁃
ity of human and nature. To detect abnormal data and provide
high quality data, historical data records could be employed by

ZTE COMMUNICATIONSZTE COMMUNICATIONS14 October 2017 Vol.15 No. 4

▲Figure 3. Architecture of Sofie.

Life check Multimodality …

Things maintenance
Data qualityData storage

Third party services

Data access (programming interface)Things configuration
command data

Internet of Everything
Third party library

command data command data

Things management Data management

3

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

some data mining algorithms. If newly acquired data differ sig⁃
nificantly from the history pattern, Sofie would analyze the rea⁃
son for that, which could be device failure, communication in⁃
terface change, or hostile attack.

In some cases, it is unavoidable that some devices or sen⁃
sors malfunction. For example, in the case of several traffic
cameras over road junctions where one traffic camera malfunc⁃
tions and keeps sending low quality data, the data processed
by nearby cameras could be leveraged as the reference before
a replacement is complete.
2.2.2 Data Storage

Data storage is integral to Sofie data management. Underly⁃
ing devices of Sofie generate a large variety of data every day.
Some of the data is just redundant, while some could be valu⁃
able for future use. To cater the design that service should be
isolated from things, valuable data should be abstracted before
being stored in the database.

The database in Sofie is used to record the following four
kinds of information:

•Device information. When a new device is added to Sofie,
the identity information is recorded, as well as some con⁃ figu⁃
ration related information, such as related services. When a re⁃
placement happens, this kind of information could be used to
restore previous configuration.

•State history. Basically, the state of a device could be di⁃
vided into three cases: on, off, and unreachable. Both on and
off indicate the device is available to the system, while un⁃
reachable state shows the device is disconnected. State infor⁃
mation is significant for Sofie to manage things.

•Event history. It records every action of a device triggered
by a related service. Event history would be useful when ana⁃
lyzing the history pattern of a certain device, or retrieving an
event at a given time.

•File path. This is an alternative information, specifically
designed for systems that include cameras. For such systems,
video or image storage usually consumes a significant amount
of space. Therefore, storing file paths in database is meaning⁃
ful for secondary development.
2.2.3 Data Access

Without a uniform programming interface, developers would
spend considerable time and effort to get data from different de⁃
vices. Created for upper layer service, a programming interface
is developed to make data access in the IoE flexible and conve⁃
nient to service practitioners, as well as a tool against potential
malicious attacks. Utilizing the database, the developer is able
to utilize the unified interface to get abstracted data from Sofie.

3 Sofie at Home
In this section, we present the home environment as an ex⁃

ample for Sofie, show how to design and implement a home OS

based on Sofie, and address the widespread latency challenge
in smart home environment.

The design of Sofie at home is shown in Fig. 4, including
seven components: the communication adapter, event hub, da⁃
tabase, self ⁃ learning engine, application programming inter⁃
face, service registry, and name management that stretches
across other components.

To integrate a device into Sofie, the communication adapter
gets access to the device by the embedded drivers. These driv⁃
ers are responsible for sending commands to devices and col⁃
lecting state data (raw data) from them. Sitting between devices
and the event hub, the communication adapter packages differ⁃
ent communication methods that come from various kind of de⁃
vices, while providing a uniform interface for upper layers’in⁃
vocation. In this way, developers and users do not need to deal
with multiple kinds of communication methods when manipu⁃
lating the system. Moreover, it only provides abstracted data to
upper layer components, reducing privacy risk to some extent.

As the core of the architecture, the event hub maps to two
layers in the logical view: the data management and self⁃man⁃
agement layers. The event hub is responsible for capturing sys⁃
tem events and sending instructions to lower levels. Those in⁃
structions are smart commands based on machine learning de⁃
veloped through communication with the self⁃ learning engine.
It collects requests from services and sends them to the com⁃
munication adapter, and in turn, collects abstracted data from
the communication adapter and sends them to upper layers.
The database is another component in the data management
layer. As a data⁃oriented system, Sofie generates large amount
of data every day, which contains valuable information related
to user preferences and settings. The event hub stores data in
the database. The data stored in the database is utilized by the
self⁃learning engine that belongs to the self⁃management layer.
The self⁃learning engine creates a learning model. This learn⁃
ing model called the self⁃learning model acts as an input to the
event hub to provide decision ⁃making capability. To provide
better user experience, the self⁃learning engine is developed to
analyze user behavior, generate the personal model for the us⁃
er, and help improve the system.

The application programming interface (API) and service
registry are located in the upper layers of the system, and are
utilized by third⁃party services. Developers are encouraged to
use Sofie APIs to communicate with the event hub, and regis⁃
ter their services with the system.

Required by all the layers, the name management module
helps the system keep devices organized. When a new device
is registered with the system, this module allocates a name for
it using the following rule: location (where), role (who), and da⁃
ta description (what). This rule is complied by all the layers.

The design of Sofie is quite flexible to accommodate multi⁃
ple functionality. Recently, with the cognitive technique devel⁃
opment, there is a growing market for voice⁃controllable smart
home products like Amazon Echo [17], Google Home [18], and

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 15October 2017 Vol.15 No. 4

4

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

Apple HomePod [19]. Such audio⁃based function is able to be
realized in Sofie as a registered service, with the presence of
suitable Natural Language Processing (NLP) model [20].

4 Smart Home Systems
There are many systems that can be used to build a smart

home. We did not build Sofie from scratch but tried to utilize
available systems to fulfill our concepts. In this section, we
will review both commercial and open source products for
smart homes.
4.1 Commercial Products

With the proliferation of the high ⁃ speed Internet and IoE,
more and more products for the smart home are also available
on the market. A smart device such as iRobot, Philips Hue,
and Nest learning thermostat shows that homeowners are ready
to embrace smart devices in their daily lives. Amazon Echo,
Samsung SmartThings, and Google Home provide a hub and us⁃
er interface for occupants to interact with connected devices.
HomeOS from Microsoft and HomeKit
from Apple enable a framework for com⁃
municating with and controlling connect⁃
ed accessories in a smart home.

Although there are a bunch of choices
on the market to implement a smart
home, the lack of proprietary software
APIs and competitors’product support
makes it hard to use commercial smart
home systems in our project.
4.2 Open Source Systems

Despite the commercial products on
the market, there are several communi⁃
ties that worked on open source projects

for home automation systems. In this section,
we compare the popular open source systems
that can be used in a smart home, and hope
this information could be helpful for the prac⁃
titioners who plan to leverage open source
home automation system in their own work.

In Table 1, we compared six open source
systems from various aspects including pro⁃
gramming languages and documentation sup⁃
port. Different object ⁃ oriented programming
languages are used in these systems such as
Python, Java, C++, C#, and Perl. We also in⁃
spected the lines of code for each system. We
found out that all the systems’lines of source
code fall into the similar magnitude between
100,000 to 1,000,000. Most of the systems ex⁃
cept MisterHouse [21] use HTML to provide
an interface to interact with the end user on

the front end. Some of the systems also developed front end na⁃
tive mobile applications for iOS and Android such as Home As⁃
sistant [22], openHAB [23], and HomeGenie [24]. Becides Mis⁃
terHouse, all of the other systems offer an API for the practitio⁃
ners to utilize their data and functions. For the data storage,
Home Assistant, Domoticz [25], and HomeGenie use SQLite
database. OpenHAB and Freedomotic [26] provide data persis⁃
tence service to the user, which means the user can freely im⁃
plement customized database through the offered interface. In
MisterHouse, the history data is not stored, and the users need
to code directly into the source file if they want to implement
automation methods. Meanwhile in all of the other systems, au⁃
tomation can be implemented through scripts file. Moreover,
for Home Assistant, openHAB, and Freedomotic, automation
could also be easily implemented by offering“trigger⁃condition
⁃action”rules. All of the systems can be running on multiple
platforms such as Linux, Windows, and Mac OS.

In the previous sections, we talked about our design of de⁃
vice abstraction and data abstraction. During the review, we
found out that none of the current open source systems offered

Special Topic

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

ZTE COMMUNICATIONSZTE COMMUNICATIONS16 October 2017 Vol.15 No. 4

▲Figure 4. Design of Sofie at home.

▼Table 1. Comparison of smart home systems

API: application programming interface JVM: Java virtual machine OS: operating system

Home
Assistant
openHAB

Domoticz

Freedomotic

HomeGenie

MisterHouse

Language

Python3

Java

C++

Java

C#

Perl

Lines
of code
213,901

904,316

645,682

159,976

282,724

690,887

Frontend

HTML, iOS
HTML, Android,

iOS, Win
HTML

HTML

HTML, Android

NA

API

Y

Y

Y

Y

Y

N

Data
storage
SQLite

Persistence
services
SQLite
Data

persistence
SQLite

NA

Automation
Rules,
Scripts
Rules,
Scripts
Scripts
Rules,
Scripts
Scripts

Perl code

Platform
Linux, Win,
Mac OS X
Any device
with JVM

Linux, Win,
Mac OS X
Any device
with JVM

Linux, Win,
Mac OS X

Linux, Win,
Mac OS X

Device
abstraction

Y

Y

N

N

N

N

Data
abstraction

N

N

N

N

N

N

Documentation

Good

Good

Poor

Good

Average

Poor

Service Service Service…

Request Data

Service registry

Application programming interface

Event Hub
Request Data

Devicename

Driver Driver Driver…

Communication adapter
Event Abstracted data

DeviceinfoNam
em

ana
gem

ent

Device Device Device
Command Raw data

Self⁃learning
engine

Data

Database

…

5

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

data abstraction function, which means they only store the raw
data reported by the devices. Only Home Assistant and open⁃
HAB implement device abstraction. They can isolate devices
from services by abstracting the role of devices. In this way,
services do not need to know the physical information of devic⁃
es such as IP and MAC addresses.

Documentation is the last index we used to evaluate the sys⁃
tems. A well written and maintained document is extremely
helpful for the practitioners to install, configure, and manage
the system. Home Assistant, openHAB, and Freedomotic pro⁃
vide good documents for the users.

Based on our evaluation of the above open source systems,
we decided to use Home Assistant and openHAB in our proj⁃
ect since their architectures fit our design better. We eventual⁃
ly chose Home Assistant over openHAB since Python has less
overhead than Java, and the Home Assistant community is
more active with updates and latest device support.

5 Implementation
In this section, we will introduce the architecture of Home

Assistant and the implementation of Sofie on top of it.
5.1 Architecture of Home Assistant

Fig. 5 shows the architecture of Home Assistant. For the
things with open APIs (as most of the products on the market
are), there are usually some third party libraries written in Py⁃
thon by the community. Home Assistant utilizes those libraries
and abstract things into different components. Then on top of
the components is the core of Home Assistant, where a state
machine, an event bus, and a service registry are supported to
control and manage the components. A user interface is offered
on top of the Home Assistant core for users to access the home
information and control devices. Home automation is also sup⁃
ported by providing a YAML (YAML Ain’t Markup Language)
[27] configuration file.
5.2 Sofie on Top of Home Assistant

Based on the comparison of open source smart home sys⁃
tems, we chose the communication layer of Home Assistant as
the substructure, and developed Sofie on top of it. As we
claimed in the previous section, Home Assistant has imple⁃
mented device abstraction in a comprehensive way. More than
600 components are supported by Home Assistant, and univer⁃
sal interfaces are provided for different kinds of devices. We
use Home Assistant as an open source package to build Sofie
prototype because Home Assistant solves the driver issue,
which facilitates the creation of Sofie, and avoids redundant
work.

To successfully implement functions required by Sofie, we
modified the components in the event bus layer and service lay⁃
er, as shown in Fig. 6. In comparison with Home Assistant,
which focuses on the functionality of the system, Sofie pays at⁃

tention to both functionality and the self⁃management of devic⁃
es. To demonstrate Sofie’s capability of data management and
things management, we conducted several preliminary experi⁃
ments by leveraging Home Assistant framework.
5.2.1 Database Renovation

Home Assistant uses SQLite as the default back end data⁃
base to store historical data. There are four tables in the data⁃
base:
•The events table records what type of event happens of what

device and at what time. It is frequently updated once a ser⁃
vice is registered, a new platform is connected, or a device
state is changed, and the detailed information will be stored
in this table.

•The recorder runs table records the start and end time of the
whole system. It only updates when Home Assistant starts
or ends.

•The schema changes table records the system update histo⁃
ry. It seldom receives and stores new data compared to other
tables.

•The states table records changes in device status, including
the last changed time and last updated time. It is an active
table since the device state changes from time to time in the
smart home environment.
To successfully realize the functionality of Sofie, we added

the following two tables. One is the IP address table to store
the IP addresses of registered devices. It updates when new de⁃
vices are added to the system, when a replacement occurs, or

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 17October 2017 Vol.15 No. 4

▲Figure 5. Architecture of Home Assistant.

HA: Home Assistant

Home automationUser interface Configuration

State machine Service registryEvent bus
HA core

States
events

Call services
Set states

Fire events
States Call services

HA component

States
events Commands

HA platform

States
events Commands

3rd party library

States
events Commands

Internet of things

States
events Commands

6

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

when a connected device changes the IP address. The life
checking component relies on this table to check the reach ⁃
ability of registered devices. The other is the file path table to
store the image/video files recorded by security cameras. Vid⁃
eo images are important information for both Sofie and top lay⁃
er services. For Sofie, this information could be utilized in de⁃
vice management. More details will be discussed in 5.2.4. Ser⁃
vices built on top of Sofie may need to fetch historical image
data to finish the tasks. For instance, this table could provide
the path of related files to a service by analyzing historical data
when the service needs to track a specific person or an event.
The update frequency of this table depends on the setting and
could vary greatly. In our experiment, it is only updated when
a certain event occurs.
5.2.2 Life Checking

Based on the Sofie design discussed in Section 2, monitor⁃
ing the healthy status of devices could help maintain system
performance. The general method to track the devices is life
checking. Considering the passive character of most devices,
the core is set as the action initiator to start the life checking.

In our configuration, all the IP addresses
in the database are attempted in a round⁃
robin manner by the system every five min⁃
utes. If an IP address could not be ac⁃
cessed, Sofie will suspend its current con⁃
figuration and mark the state as“unreach⁃
able”both in database and user interface.
Otherwise, the working state will be dis⁃
played on the user interface. Generally
speaking,“unreachable”is not necessary
because of device failure just because the
user turned off the device through its phys⁃
ical switch, or due to environment power
outage.
Fig. 7 is an example of a user interface

with life checking function. There are four
devices in the living room: a table lamp
controlled by a smart switch, ceiling lights
composed of several smart light bulbs, a
smart thermostat, and Chromecast. During
the life checking round, the Chromecast is
inaccessible, and therefore the user inter⁃
face displays“unreachable”as its current
state.
5.2.3 APIs

Sofie provides two APIs for practitio⁃
ners to work with: a Python API inherited
from Home Assistant to interact with
things, and a database application pro⁃
gramming interface (DB ⁃ API) for SQLite
database. With the Python API shown in

Fig. 8, developers can connect to Sofie remotely with IP ad⁃
dress and password combination, get data from Sofie, and also
control the devices. With DB⁃API shown in Fig. 9, developers
can connect to the Sofie database directly if the service only
cares about the home data.
5.2.4 Multimodality Checking

Another way to check the healthy status of devices is multi⁃

Special Topic

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

ZTE COMMUNICATIONSZTE COMMUNICATIONS18 October 2017 Vol.15 No. 4

▲Figure 6. Architecture of Sofie on top of Home Assistant.

▲Figure 7. Home Assistant user interface with life checking.

Internet of Things

States
events Commands

Third party library

States
events Commands

HA platform

States
events Commands

HA component States events
Communication

Data abstraction

Data quality management

Data management

Abstracted states
Abstracted eventsCommands

State machine Service registry

Self⁃management

HA core

Event bus Things management

User interface Home automationConfiguration Program interface
Service management

Third party serivces

Call serivces
Set states

Fire events
States States

events
Call

services

Table lamp

Ceiling lights

AC

Chromecast unreachable

Living Room

HA: Home Assistant

7

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

modality checking. When a new device is registered, the user
is allowed to set up a rule for multimodality checking. The rule
manner is Name_of_device1: multimodal: name_of_device2.
This rule states that Device 2 will be invoked when Sofie
checks the healthy status of Device 1. Such status check rela⁃
tionship could exist in different kinds of devices such as light
and camera, AC system and temperature sensor, and sound sys⁃
tem and acoustic sensor. In the preliminary experiment, we
used light and camera as an example, in which the security
camera plays a key role in taking pictures and utilizing vision
related libraries to process the captured images. Assuming a
relatively dark background, Sofie checks if the light is operat⁃
ing normally by triggering the camera to take a picture when
the light turns on and compare it with a previously saved one
when the light was off. Then Sofie retrieves the vision related li⁃
brary to compare the difference between the two images to
check if the light successfully turned on.

Figs. 10 and 11 show the multimodality checking process.
The pictures in Figs. 10a and 10b are taken from the same an⁃
gle, and the same applies to Figs. 10c and 10d. The generated
gray level histogram of each picture is shown in Fig. 11. Figs.
11c and 11f are the gray level histogram of difference image of
Figs. 10a and 10b, and Figs. 10c and 10d respectively. To ana⁃
lyze the grey level images, an appropriate threshold method is
meaningful [28]. As a preliminary experiment, we set the
threshold of pixel gray level to 50. That is, if more than half of
the pixels are larger than 50 in the image difference gray level
histogram, the system treats the light as turned on. The same
method standard can also be used to confirm the light is turned

off. During the preliminary experiment, the average response
time is 220 ms for a complete multimodality checking process,
which including taking picture, transferring message, compar⁃
ing two pictures, and getting the conclusion. Multimodality
checking is not limited to monitoring a light’s state. In a ma⁃
ture smart home running Sofie, the security camera has the
ability to check several devices such as a smart stove and a
washer machine.
5.2.5 Configuration File

When Sofie starts, it will reach out to the configuration file
to set up the initial smart home environment. Inherited from
Home Assistant, the configuration file is consisted of two parts:
1) default settings, including the user interface (username and
password) and geographic location (longitude, latitude, time
zone, etc.); 2) custom settings input by the user, telling the sys⁃
tem what kind of device is ready to connect and what kind of

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 19October 2017 Vol.15 No. 4

◀Figure 9.
DB⁃API example code
for Sofie.

Python⁃API interface for Sofie inherited from HA
import homeassistant.remote as remote
Connect to Sofie Hub
api = remote.API(‘192.168.0.1’,‘YOUR_PASSWORD’)
Get available services, events, and entities
services = remote.get_services(api)
events = remote.get_event_listeners(api)
entities = remote.get_states(api)

DB⁃API interface for SQLite databases
import sqlite3
Connect to database
comm = sqlite3.connect(‘Sofie.db’)
c = conn.cursor()
Query data from database
c.execute(“SELECT * FROM event_data WHERE
entity_id=’switch.livingronn_switch’”)
Save (commit) the changes
conn.comit()
Close the connection
conn.close()

◀Figure 8.
Python API example
code for Sofie.

Figure 10.▶
Camera snapshots

when light turns
on/off. d) Light on

a) Light off

b) Light on

c) Light off

8

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

service is required. A sample configuration file is shown in
Fig. 12. Usually, same kind of devices are grouped to the same
component, then distinguished by different platforms (brands)
and IP addresses. Fig. 12b defines one media player (Roku
TV), one light group (control through Phillips Hue), and two se⁃
curity cameras (Amcrest camera, and MJPEG camera). Accord⁃
ing to this configuration file, the living room camera is in⁃
volved in the multimodality checking of light.

In this section, we introduced how we implement Sofie for a
smart home, and we also showed how to implement our design
on the top of an open source system. An open source package
of Sofie is going to be released on our website soon.

6 Discussion
Here, we share some lessons and experience we have

learned during the design and development of a smart home.
6.1 Latency in Sofie at Home

In a smart home, the response time is an important metric to
determine whether a smart home system is satisfactory or not
[29]- [35]. Sofie is no exception. Back in 1968, Miller de⁃
scribed computer mainframe responsiveness in three different
orders of magnitude [36]: 1) 100 ms is perceived as instanta⁃
neous; 2) 1 s or less is fast enough for the user to interact with

the system in a free way; 3) 10 s or more reduces the user’s in⁃
terest. Generally speaking, controlling the response time under
1 s is sufficient for the satisfactory functionality of the smart
home implementation, and meeting user expectations.
Fig. 13 shows the latency of turning on light in both conven⁃

Special Topic

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

ZTE COMMUNICATIONSZTE COMMUNICATIONS20 October 2017 Vol.15 No. 4

a) Default settings

f) Image difference

◀Figure 11.
Gray level histogram
corresponding to the
snapshots in Fig. 10.

a) Light off b) Light on c) Image difference

d) Light off e) Light on

▲Figure 12. Configuration file example code for Sofie.

b) Custom settings

9
×104

8
7
6
5
4
3
2
1
0

Nu
mb

ero
fpi

xel
s

Light off

250200150100500
Grey value

6

Nu
mb

ero
fpi

xel
s 5

4
3
2
1
0

7 ×104 Light on

250200150100500
Grey value

×104 Difference6

Nu
mb

ero
fpi

xel
s

5
4
3
2
1
0

250200150100500
Grey value

9 ×104

8
7
6
5
4
3
2
1
0

Nu
mb

ero
fpi

xel
s

Light off

250200150100500
Grey value

9
×104

8
7
6
5
4
3
2
1
0

Nu
mb

ero
fpi

xel
s

Difference

250200150100500
Grey value

×104

6
5
4
3
2
1
0

Nu
mb

ero
fpi

xel
s

Light on

250200150100500
Grey value

9

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

tional and smart home scenarios. When a user walks to a physi⁃
cal switch position to turn on the light (Fig. 13a), we assume T1
is the time that takes a user to physically walk to the light
switch position, and T2 is the time to switch the light from off
to on position, then the total response time is T1+T2 ≈ T1 sinceT2 is perceived as instantaneous (T2 ≈ 0). Therefore, the laten⁃
cy is T1 in this scenario. On the other hand, in Sofie the re⁃
sponse time for turning on the light consists of three parts (Fig.
13b): The time for user sending the command by voice or user
interface (T1), that for Sofie parsing the command to determine
the object and action (T2), and that for Sofie turning on the
light according to the command (T3). For the user, the expected
response time is counted after he actuates the command (T1 ≈
0). Thus, the response time is T2+T3. As discussed earlier, the
response time should be limited to 1 s for the user to interact
freely and easily with the system. That is T2+T3 ≤ 1 s. During
this process, many factors could potentially contribute to the la⁃
tency, including software components, hardware configuration,
and network conditions. In our preliminary experiment, turning
on the light via a user interface takes less than 200 ms for an
event from initiation to completion in a stable Wi⁃Fi environ⁃
ment. However, if the light is turned on by using a voice⁃con⁃
trolled service, Sofie will face more challenges by spending
more time in capturing and parsing voice commands [37], [38].
This is mainly due to dependence on NLP models. Thus, a well
⁃ trained NLP model and search engine are urgently required
for a satisfactory response time in Sofie.
6.2 Lessons and Experience

Whether it is a technical or non ⁃ technical task, there is a
minimum skill level required to complete the task on hand. De⁃
pending on the task complexity and the field the task belongs
to, knowledge in more than one field or area might be required.

Converting a non⁃smart home to a smart one requires some
knowledge in software, hardware, and networking. For a non ⁃
technical homeowner, the Do⁃It⁃Yourself (DIY) task of convert⁃
ing a non⁃smart home to a smart one can be difficult and over⁃
whelming. It will take several trials and errors before such a
task is completed successfully. As an example, a DIY wireless

surveillance system project will require 1) hardware configura⁃
tion, 2) software installation and configuration, and 3) mainte⁃
nance. Therefore, there is a considerable amount of manual
work involved that most homeowners will find cumbersome.

Open source home automation software like Home Assistant
provides a solution for integrating various home automation sys⁃
tems into one single solution via a uniform user interface. Al⁃
though such open source software is vendor⁃ neutral, hardware/
protocol⁃agnostic, extensible, and platform independent, a ho⁃
meowner has to invest a considerable amount of time in learn⁃
ing its concept and architecture in order to setup a customized
smart home. The steep learning curve revolves around the set⁃
up and configuration of the system. That is, the existing open
source software is neither plug and play nor a commercial off⁃
the⁃shelf (COTS) product.

In addition to that, the current open source software is still
not a data ⁃oriented system; therefore, it does not involve ma⁃
chine learning. To further elaborate on that point, an experi⁃
enced smart home user can utilize external software by creat⁃
ing scripts to communicate with the open source software. As
an example, a user can use software like Blueiris to consume
open source software API in order to trigger events. As an ex⁃
ample, Blueiris can communicate with Home Assistant to turn
on lights, TV, and so on when motion is detected. That is, any
device (thing) on the home automation bus can be controlled re⁃
motely when motion is detected.

7 Conclusions
In this paper, we proposed Sofie, a smart operating system

for the IoE, and discussed its design and implementation. We
illustrated the design of Sofie at home and the significance of
latency in a smart home environment. We then compared open
source and commercial smart home systems that are available
on the market nowadays. When explaining the implementation
of Sofie in detail, we attempted to discuss a few of IoE⁃associat⁃
ed challenges that are related to configuration and mainte⁃
nance. In general, whether it is a smart home or a connected
vehicle, the user experience is very critical to the success of
IoE applications. If it is hard to configure, maintain, and com⁃
municate with devices, the smart home experience will not be
successful. If it takes 30 seconds to turn on a light remotely,
the chances are that the user would not use the application for
long. We showed that Sofie could be helpful in the IoE to prac⁃
titioners to better manage their things, data, and services.

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 21October 2017 Vol.15 No. 4

Object: light
Action: turn on

Walk to the switch position (T1)

Parse command

ON

OFF T2

T2

T3

References
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu,“Edge computing: vision and chal⁃

lenges,”IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Jun. 2016.
doi: 10.1109/JIOT.2016.2579198.

[2] Cisco,“Cisco global cloud index: forecast and methodology, 2014-2019,”Cisco,
white paper, 2014.

[3] D. Evans,“The internet of things: how the next evolution of the internet is chang⁃
ing everything,”CISCO white paper, vol. 1, p. 14, 2011.

▲Figure 13. Latency in turning on light.

Speak/send: turn on the light (T1)

10

D:\EMAG\2017-10-59/VOL15\F1.VFT——11PPS/P

Special Topic

An OS for Internet of Everything: Early Experience from A Smart Home Prototype
CAO Jie, XU Lanyu, Raef Abdallah, and SHI Weisong

ZTE COMMUNICATIONSZTE COMMUNICATIONS22 October 2017 Vol.15 No. 4

[4] Y. Strengers. (2016, Jun. 10). Creating pleasance: new needs for the smart home
[Online]. Available: http://www.demand.ac.uk/10/06/2016/creating ⁃ pleasance ⁃
new⁃needs⁃for⁃the⁃smart⁃home⁃yolande⁃strengers

[5] D. ⁃ L. Wang,“The internet of things the design and implementation of smart
home control system,”in IEEE International Conference on Robots & Intelligent
System (ICRIS), Zhangjiajie, China, Dec. 2016, pp. 449- 452. doi: 10.1109/
ICRIS.2016.95.

[6] U. Bakar, H. Ghayvat, S. Hasanm, and S. Mukhopadhyay,“Activity and anomaly
detection in smart home: a survey,”in Next Generation Sensors and Systems.
Berlin/Heidelberg, Germany: Springer, 2016, pp. 191-220.

[7] Y. Strengers,“Envisioning the smart home: reimagining a smart energy future1,”
in Digital Materialities: Design and Anthropology, S. Pink, E. Ardevol, and D.
Lanzeni ed. London, UK: Bloomsbury Publishing, 2016.

[8] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani,“Internet⁃of⁃things⁃
based smart environments: state of the art, taxonomy, and open research chal⁃
lenges,”IEEE Wireless Communications, vol. 23, no. 5, pp. 10-16, Nov. 2016.
doi: 10.1109/MWC.2016.7721736.

[9] N. Jiang, C. Schmidt, V. Matossian, and M. Parashar,“Enabling applications in
sensor⁃based pervasive environments,”in Proc. 1st Workshop on Broadband Ad⁃
vanced Sensor Networks (BaseNets), San Jose, USA, 2004, p. 48.

[10] M. Gowda, A. Dhekne, S. Shen, et al.,“Bringing iot to sports analytics,”in
14th USENIX Symposium on Networked Systems Design and Implementation,
Boston, USA, 2017, pp. 498-513.

[11] D. Vasisht, Z. Kapetanovic, J. Won, et al.,“Farmbeats: An iot platform for
data ⁃ driven agriculture,”in 14th USENIX Symposium on Networked Systems
Design and Implementation, Boston, USA, 2017, pp. 514-529.

[12] E. Soltanaghaei and K. Whitehouse,“Walksense: Classifying home occupancy
states using walkway sensing,”in Proc. 3rd ACM International Conference on
Systems for Energy⁃Efficient Built Environments, Stanford, USA, 2016, pp. 167-
176.

[13] Y. Agarwal, B. Balaji, R. Gupta, et al.,“Occupancy⁃driven energy management
for smart building automation,”in Proc. 2nd ACM Workshop on Embedded Sens⁃
ing Systems for Energy⁃Efficiency in Building, Zurich, Switzerland, 2010, pp.
1-6. doi: 10.1145/1878431.1878433.

[14] D. Austin, Z. T. Beattie, T. Riley, et al.,“Unobtrusive classification of sleep
and wakefulness using load cells under the bed,”in Annual International Con⁃
ference of the IEEE Engineering in Medicine and Biology Society (EMBC), San
Diego, USA, 2012, pp. 5254-5257. doi: 10.1109/EMBC.2012.6347179.

[15] G. Gao and K. Whitehouse,“The self⁃programming thermostat: optimizing set⁃
back schedules based on home occupancy patterns,”in Proc. First ACM Work⁃
shop on Embedded Sensing Systems for Energy⁃Efficiency in Buildings, Berke⁃
ley, California, 2009, pp. 67-72. doi: 10.1145/1810279.1810294.

[16] G. Zhang and M. Parashar,“Context⁃aware dynamic access control for perva⁃
sive applications,”in Pro. Communication Networks and Distributed Systems
Modeling and Simulation Conference, San Diego, USA, 2004, pp. 21-30.

[17] Amazon. (2017, Jun. 2). Amazon echo [Online]. Available: https://www.amazon.
com/Amazon⁃Echo⁃Bluetooth⁃Speaker⁃ with⁃WiFi⁃Alexa/dp/B00X4WHP5E

[18] Google. (2017, Jun. 2). Google home [Online]. Available: https://madeby.google.
com/home

[19] Apple. (2017, Jun. 6). Apple homepod [Online]. Available: https://www.apple.
com/homepod

[20] M. Chandak and R. Dharaskar. (2010, Apr.). Natural language processing
based context sensitive, content specific architecture & its speech based imple⁃
mentation for smart home applications. International Journal of Smart Home
[Online]. 4(2). Available: http://www.sersc.org/journals/IJSH/vol4_no2_2010/1.
pdf

[21] MisterHouse. (2017, May 10). MisterHouse—it knows kung⁃fu [Online]. Avail⁃
able: http://misterhouse.sourceforge.net

[22] Home Assistant. (2017, May 10). Home assistant, an open⁃source home automa⁃
tion platform running on python 3 [Online]. Available: https://home⁃assistant.io

[23] OpenHAB. (2017, May 10). OpenHAB, a vendor and technology agnostic open
source automation sofware for your home [Online]. Available: https://www.open⁃
hab.org

[24] HomeGenie. (2017, May 10). HomeGenie, the open source, programmable,
home automation server for smart connected devices and applications [Online].
Available: http://www.homegenie.it

[25] Domoticz. (2017, May 10). Domoticz, control at your finger tips [Online]. Avail⁃
able: http://www.domoticz.com

[26] Freedomotic. (2017, May 10). Freedomotic, open IoT framework [Online]. Avail⁃
able: http://www.freedomotic.com

[27] YAML. (2017, May 10). Yaml ain’t markup language [Online]. Available: http:
//yaml.org

[28] M. Sezgin et al.,“Survey over image thresholding techniques and quantitative
performance evaluation,”Journal of Electronic imaging, vol. 13, no. 1, pp.
146-168, Jan. 2004.

[29] Safehome. (2017, Jun. 2). Best home security company response times [Online].
Available: https://www.safehome.org/security⁃ systems/best/response⁃times

[30] K. M. Tsui and S. ⁃ C. Chan,“Demand response optimization for smart home
scheduling under real⁃time pricing,”IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 1812-1821, Dec. 2012. doi: 10.1109/TSG.2012.2218835.

[31] F. Fernandes, H. Morais, Z. Vale, and C. Ramos,“Dynamic load management
in a smart home to participate in demand response events,”Energy and Build⁃
ings, vol. 82, pp. 592-606, Oct. 2014. doi: 10.1016/j.enbuild.2014.07.067.

[32] T. ⁃Y. Chung, I. Mashal, O. Alsaryrah, et al.,“Design and implementation of
light⁃weight smart home gateway for social web of things,”in IEEE Sixth Inter⁃
national Conf on Ubiquitous and Future Networks (ICUFN), Shanghai, China,
Jul. 2014, pp. 425-430. doi: 10.1109/ICUFN.2014.6876827.

[33] M. Li and H.⁃J. Lin,“Design and implementation of smart home control sys⁃
tems based on wireless sensor networks and power line communications,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4430-4442, Jul.
2015. doi: 10.1109/TIE.2014.2379586.

[34] Y. Ozturk, D. Senthilkumar, S. Kumar, and G. Lee,“An intelligent home ener⁃
gy management system to improve demand response,”IEEE Transactions on
Smart Grid, vol. 4, no. 2, pp. 694-701, Jun. 2013. doi: 10.1109/TSG.2012.
2235088.

[35] R. Deng, Z. Yang, F. Hou, M.⁃Y. Chow, and J. Chen,“Distributed real⁃time de⁃
mand response in multiseller-multibuyer smart distribution grid,”IEEE Trans⁃
actions on Power Systems, vol. 30, no. 5, pp. 2364- 2374, Sept. 2015.
doi: 10.1109/TPWRS.2014.2359457.

[36] R. B. Miller,“Response time in man⁃computer conversational transactions,”in
ACM AFIPS’68, San Francisco, USA, Dec.1968, pp. 267-277. doi: 10.1145/
1476589.1476628.

[37] P. Chahuara, F. Portet, and M. Vacher,“Context⁃aware decision making under
uncertainty for voice⁃based control of smart home,”Expert Systems with Appli⁃
cations, vol. 75, pp. 63-79, Jun. 2017. doi: 10.1016/j.eswa.2017.01.014.

[38] M. R. Abid, E. M. Petriu, and E. Amjadian,“Dynamic sign language recogni⁃
tion for smart home interactive application using stochastic linear formal gram⁃
mar,”IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3,
pp. 596-605, Sept. 2015. doi: 10.1109/TIM.2014.2351331.

Manuscript received: 2017⁃06⁃07

CAO Jie (jiecao@wayne.edu) received his B.S. in telecommunication engineering
from Xidian University, China and M.S. in computer science from Wayne State Uni⁃
versity, USA. He is currently pursuing his Ph.D. in computer science at Wayne
State University and internship at Interdigital Inc. His research interests include
edge computing, computer systems, and wireless health. He has published 5 re⁃
search papers and his publication of MyPalmVein received the Best Student Paper
Award from HealthCom, 2015.
XU Lanyu (xu.lanyu@wayne.edu) received her B.S. in electronic and information
engineering from Tongji University, China. She is currently a Ph.D. candidate in
computer science at Wayne State University, USA. Her research interests include
edge computing, computer systems, and cognitive service.
Raef Abdallah (raef.abdallah@gmail.com) received his B.S. in computer science
from Lebanese American University, Lebanon. He holds M.S. degrees in computer
science and industrial engineering from Oklahoma State University, USA. His re⁃
search interests include IoT, smart homes, simulation, and design of algorithms. He
has developed solutions for major companies in the United States in the areas of ed⁃
ucation, manufacturing, and defense. He is currently working in the connected vehi⁃
cle technology.
SHI Weisong (weisong@wayne.edu) is a Charles H. Gershenson Distinguished Fac⁃
ulty Fellow and a professor of Computer Science at Wayne State University, USA.
His research interests include edge computing, computer systems, energy⁃efficien⁃
cy, and wireless health. He received his B.S. from Xidian University, China in
1995, and Ph.D. from Chinese Academy of Sciences, China in 2000, both in comput⁃
er engineering. He is a recipient of National Outstanding Ph.D. Dissertation Award
of China and the NSF CAREER award. He is an IEEE Fellow and an ACM Distin⁃
guished Scientist.

BiographiesBiographies

11

