
D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

A Transparent and User⁃Centric Approach to UnifyA Transparent and User⁃Centric Approach to Unify
Resource Management and Code Scheduling ofResource Management and Code Scheduling of
Local, Edge, and CloudLocal, Edge, and Cloud
ZHOU Yuezhi1, ZHANG Di1, and ZHANG Yaoxue2

(1. Tsinghua University, Beijing 100084, China;
2. Central South University, Changsha 410083, China)

Abstract

Recently, several novel computing paradigms are proposed, e.g., fog computing and edge computing. In such more decentralized
computing paradigms, the location and resource for code execution and data storage of end applications could also be optionally
distributed among different places or machines. In this paper, we position that this situation requires a new transparent and user⁃
centric approach to unify the resource management and code scheduling from the perspective of end users. We elaborate our vi⁃
sion and propose a software⁃defined code scheduling framework. The proposed framework allows the code execution or data stor⁃
age of end applications to be adaptively done at appropriate machines under the help of a performance and capacity monitoring fa⁃
cility, intelligently improving application performance for end users. A pilot system and preliminary results show the advantage of
the framework and thus the advocated vision for end users.

cloud computing; fog computing; edge computing; mobile edge computing; resource management and code scheduling
Keywords

DOI:10.3969/j.issn.16735188.2017.04.001
http://kns.cnki.net/kcms/detail/34.1294.TN.20171025.1001.002.html, published online October 25, 2017

I
1 Introduction

n the past several years, cloud computing has made a
significant achievement by penetrating into our daily
work and life through pervasive smart devices and
fixed or mobile networks. Large or small companies

increasingly adopt commercial clouds (e.g., EC2 by Amazon, G
Suite by Google, and Azure by Microsoft) or private clouds to
host their computing or storage services. A cloud typically con⁃
sists of hundreds or thousands of servers, facilitating flexible
and rapid access to a shared pool of dynamically configured
and nearly unlimited computational and storage resources. The
two major advantages of cloud computing (i.e., the elasticity of
resource provisioning and the pay⁃as⁃you⁃go pricing model) en⁃
able users to use and pay only for their actually needed re⁃
sources, inspiring most companies to transfer their traditional
computing facilities to cloud platforms.

In the meanwhile, it has witnessed the pervasive usage of
smart mobile devices, such as smart phones, pads, and wear⁃
ables to access thousands of services (e.g., Facebook, Twitter,

Wechat) hosted on different cloud platforms. As of 2011, the
global shipments of smart mobile devices had exceeded PCs.
At the end of 2016, the global mobile users reached up to 7 bil⁃
lion [1]. End users of mobile devices often use the proliferated
high⁃speed wireless access technologies (e.g. long term evolu⁃
tion (LTE), 4G, worldwide interoperability for microwave ac⁃
cess (WiMax)) to access services from remote cloud platforms,
making cloud computing into a new developing stage. Howev⁃
er, even with more powerful computational and storage equip⁃
ment, the process and energy of mobile devices are still limited
due to the fact that mobile applications are now becoming
more sophisticated than ever in terms of computing and storage
requirements. To alleviate this resource bottleneck of mobile
devices, the computation, storage, and networking functions
are often offloaded to cloud, giving rise to a new mobile cloud
computing (MCC) [2], [3].

However, the relatively poor performance of long⁃haul wide⁃
area and wireless networks and the unpredictable contention
for the shared system resources at consolidated cloud servers
make end⁃user experiences far away from satisfaction. On one
hand, limited network bandwidth, time⁃varying network quali⁃
ty, and long roundtrip time of long⁃haul wide⁃area or wireless
networks [4], [5] would impair the code/data transmission and
responsiveness of users’demands, especially degrading the us⁃

This work was supported in part by Initiative Scientific Research Program
in Tsinghua University under Grant No. 20161080066, and in part by
International Science & Technology Cooperation Program of China under
Grant No. 2013DFB10070.

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 03October 2017 Vol.15 No. 4

1



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

er experience of interactive applications. On the other hand,
the computation consolidation at the shared resources (e.g.
CPU, disks, and I/O) at cloud servers would bring with in⁃
creased and unpredictable contention, which may lead to sig⁃
nificant performance degradation in terms of code execution
time and result ⁃ return latency. This problem of noisy ⁃ neigh⁃
bors or multitenancy is an outstanding issue especially in pub⁃
lic or commercial cloud [6]. Unstable and unpredictable perfor⁃
mance due to multitenancy has also been observed when exe⁃
cuting computation ⁃ intensive scientific tasks on commercial
cloud platforms [7] and has even led companies to give up the
usage of cloud [8].

Recently, many researchers have proposed that in order to
address these challenges faced by traditional cloud computing
in various application environments, new computing paradigms
have to be brought forward under the principal of“bringing
cloud closer to end user”. Typical computing paradigms are
proposed including fog computing [9], mobile edge computing
[10], edge computing [11], and dew computing [12]. This
means there is a paradigm shift from the centralization of cloud
computing to the decentralization of fog/edge computing simi⁃
lar to the shift from Mainframe computing to PC computing.
Considering that the resource management and code schedul⁃
ing in cloud computing has to be changed due to the paradigm
shift from PC computing, we position that the resource manage⁃
ment and code scheduling in the post ⁃ cloud computing era
would also call for new mechanisms and approaches. Obvious⁃
ly, how to manage resources and schedule codes in an efficient
and/or optimal manner is very challenging in today’s comput⁃
ing environments, considering the co ⁃ existence of local, fog,
and cloud computing. In this paper, we advocate for a transpar⁃
ent and user ⁃centric approach as a novel mechanism to man⁃
age the resources and codes among a local device, its peer de⁃
vices, nearby fog/edge servers, and cloud servers in a unified
manner from an end user viewpoint, and then schedule and dis⁃
tribute the code to execute on the appropriate machines in a
transparent and intelligent way under the help of new facilities
or tools. We position that this management and scheduling ap⁃
proach will retain the core advantages of using Micro clouds
(formed with one or several fog/edge servers) and/or clouds as
a support infrastructure but will put back the control and trust
decisions to end users in an easy and hales⁃free way, allowing
for novel mobile applications.

The remainder of this paper is organized as follows. In Sec⁃
tion 2, we describe our idea and position of a transparent and
user ⁃ centric mechanism for resource management and code
scheduling in the virtually unified federal computing environ⁃
ment consisting of the local computing, fog/edge computing,
and cloud computing. In Section 3, we present a software⁃de⁃
fined code scheduling framework for illustration of our vision
in details. In Section 4, we discuss a pilot system of the pro⁃
posed code scheduling framework and evaluate the system
through several experiments to demonstrate the effectiveness

of the framework. Finally, we conclude the paper in Section 5.

2 Unifying Resource Management and Code
Scheduling for Local, Edge, and Cloud
In a typical cloud computing environment, as shown in Fig.

1, there is a data center with logically unlimited compute and
storage capacity. A lot of end⁃user devices surround the data
center and connect to it with a wireless and/or long⁃haul wide⁃
area network and access the services from the cloud. An end
user manages the local resources of their devices (e.g., smart⁃
phones, iPads) and run their applications on the local machine.
If needed, the end user requires to use the compute or storage
resources from the data center. The cloud provider or the sys⁃
tem administrator of the data center manages and schedules
the resources of the cloud platform based on their benefits in a
centralized manner and chooses the policy or strategy about
where and how to execute the offloaded code from end users.

If the local compute resource is not enough for the end⁃user
device, an end user can upload/offload these computation ⁃ in⁃
tensive codes and related data to the cloud to execute there.
Usually, two steps may occur during the period of the code exe⁃
cution. In the first placement (assignment) step, the uploaded
codes is put on a specific server chosen in the data center by
the code scheduler or dispatcher of the cloud platform based
on current system status of resource usage. However, if the sys⁃
tem status is changed due to some reasons (e.g., underutiliza⁃
tion of server resources, conflicts of other resource consumers),
the second reassignment (also referred to as migration in virtu⁃
al machine (VM) based code offloading) step will occur and the
code scheduler will transfer and schedule the code (accompa⁃
nying with its data) to run on another more appropriate or opti⁃
mal server in the data center. Note that this reassignment step
to achieve an optimal performance or resource utilization may
occur multiple time during the period of the code execution
based on the tradeoff between the quality of experience (QoE)
of end users and the resource operating costs/polices and rela⁃
tive benefits of the cloud provider.

Due to the natural ownership of the local end⁃user devices
and the remote cloud servers, the resource management and
code execution scheduling policies and strategy are made inde⁃
pendently by end users and the cloud owner or provider based
on their respective benefits and the service level agreement
(SLA). Obviously, in the above centralized cloud computing

End user

▲Figure 1. Typical scenario of a cloud computing system.

Base station

Cloud
Wi⁃Fi

Special Topic

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

ZTE COMMUNICATIONSZTE COMMUNICATIONS04 October 2017 Vol.15 No. 4

Mobile device

2



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

system, centralized resource management and code scheduling
for offloaded codes can make usage of the resources of cloud
platform by fully exploiting consolidation to improve the re⁃
source utilization and reduce the operating cost in the data cen⁃
ter. It is also reasonable for end users to just require and de⁃
mand the execution service based on the SLA. Therefore, the
current centralized resource management and code scheduling
without the involvement of end users is natural and suitable for
cloud computing⁃based systems.

On the contrary, with the recently emerged fog/edge comput⁃
ing, there might be servers at nearby Nano data centers closer
to end users in addition to servers located in remote data cen⁃
ters. Considering that fog/edge computing is just an extension
of cloud computing at the edge of network, we believe that the
traditional centralized cloud computing and the newly decen⁃
tralized fog/edge computing will coexist for a long time. In
such a situation, there would be several types of machines or
places that end users can put their application codes to exe⁃
cute, including the local device, peer devices, nearby fog/edge
servers, and remote cloud servers.

As shown in Fig. 2, we consider a general picture of mixed
or federal computing environments in which end users can
offload their computing tasks/codes to different computing de⁃
vices, including local mobile devices, peer mobile devices,
nearby fog/edge servers, and remote cloud servers in data cen⁃
ters. All of these computing devices or servers are interconnect⁃
ed through wireline or wireless links. Typically, the access link
from the mobile devices to the fog/edge server is wireless. Gen⁃
erally, fog/edge servers are attached to the points of wireless
access in a form of Nano data center or Micro cloud. Nearby
Micro clouds of fog/edge are generally characterized by limited
computation or storage resources, but are directly accessible
by end users to avoid the additional communication delay of
the Internet. Considering the cost of establishing a Micro cloud
of fog/edge could be very little, even with only a single server,
we believe that there could be multiple nearby Micro clouds
around an end user and these clouds may be or not be owned
and managed by the same provider.

Obviously, a mixed computing environment consisting of lo⁃
cal devices, peer devices, edge servers, and cloud servers is
much more complex compared to a single cloud environment of
local devices and cloud servers. It is natural that the resource
management and code scheduling mechanism in a mixed sce⁃

nario would be much more complicated to achieve a global op⁃
timization. Currently, a cloud provider only commits to avail⁃
ability of their services, through SLAs with their clients. There⁃
fore, there are numerous inherent factors that introduce uncer⁃
tainty regarding the actual performance of an offloaded task by
end users in a cloud computing infrastructure [13]. However,
in a mixed computing environment, if the performance of an
offloaded task degrades due to the uncertainty of a cloud serv⁃
er, an ideal code scheduler or dispatcher can reassign its code
to execute on another fog/edge server in the whole federal com⁃
puting system to exploit better resources than that of any serv⁃
er in the original cloud to furtherly reduce the execution time
and mitigate the effects of uncertainty than before. This is the
basic reason that we advocate for a new and unified resource
management and code scheduling mechanism for efficiently
and optimally utilizing the whole system resources across dif⁃
ferent computing devices and different Micro clouds or cloud
servers in the post ⁃ cloud era. This will bring end users with
better performance and much more satisfactory experience.

In this section, we elaborate the resource management and
code scheduling mechanism that enables end users to leverage
the resources that across all of the computing devices and serv⁃
ers that may be owned and managed by different individuals or
organizations. We positon that end users can select and choose
where and how to execute their offloaded applications (e.g.,
code, data, networking) at their will and benefits. In contrast to
the centralized approach where the cloud provider selects the
cloud⁃wide optimal scheduling strategy, we advocate for trans⁃
parent and user ⁃ centric approaches where the decisions are
made independently by each end user or task. First, we delin⁃
eate the performance benefits that arise for mobile end users in
emerging computing paradigms and identify the opportunities
to logically unify the resource management and code schedul⁃
ing across different computing devices, Micro clouds and cloud
servers to improve the performance in a user⁃centric viewpoint.
Second, we explain the difficulties and challenges for end us⁃
ers to manage and schedule their tasks/codes across different
computing devices, Micro clouds and/or cloud servers, and
identify the requirement that an intelligent facility or tool is
called for to help end users and even Micro cloud or cloud pro⁃
viders to achieve an optimal scheduling for them under several
constraints to achieve a more efficient resource utilization
among the whole mixed and federal system.
2.1 Unifying Resource Management and Code Scheduling

from User⁃Centric Viewpoint
As stated above, the resource management and code sched⁃

uling mechanism in a cloud is a centralized one where the
cloud provider selects the scheduling strategy for the cloud
based on the benefits of their own. Obviously, this mechanism
is a cloud ⁃ centric or server ⁃ centric approach. Because the
cloud is a dynamically changing environment, its performance
depends on numerous uncontrollable and unpredictable param⁃▲Figure 2. Typical scenario of a mixed computing environment.

Peer device

End user Mobile device
Base station

Peer device

Wi⁃Fi
Fog/edge servers Cloud servers

ZTE COMMUNICATIONSZTE COMMUNICATIONS 05October 2017 Vol.15 No. 4

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

Special Topic

3



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

eters. The performance of an offloaded task/code cannot be
guaranteed and it may upgrade or degrade with the available
resources on the hosted server. However, in a mixed computing
environment of local, edge, and cloud, the current cloud⁃cen⁃
tric approach cannot utilize the resources across different com⁃
puting devices, Micro clouds or cloud servers as a whole and
thus cannot globally achieve an optimal scheduling strategy
from the perspective of an end user. To elaborate the benefits
of a new code scheduling mechanism, we give two hypothetical
application scenarios based on code offloading of mobile appli⁃
cations.

In Scenario 1, because of his smart phone’s limited comput⁃
ing power, Bob offloads a computation ⁃ intensive task into a
server (S1) in a remote cloud owned and managed by the pro⁃
vider P1 to efficiently execute the code according to the SLA.
Afterwards, he moves to another place where there is a nearby
fog server (F1) that is free and its available computing power is
much more than the host server S1 that is now competitive for
several tasks of other end users.

In Scenario 2, Alice wants to offload her computation⁃inten⁃
sive task into a nearby edge server due to her limited smart
phone’s computing power. There are two edge severs (E1 and
E2) owned and managed by two providers (P2 and P3) respec⁃
tively. Without further information, she chooses the cheaper
E1 to execute the task. Afterwards, another woman also choos⁃
es the E1 to execute her code, reducing the computing power
shared by Alice. At the same time, E2 is available with a much
higher computing capacity.

With the current cloud⁃centric or server⁃centric code sched⁃
uling mechanism, there is not a facility to help Bob and Alice
to schedule their codes across Micro clouds or clouds, thus
what Bob and Alice can do is only waiting for his or her task to
finish without any control of the execution of their offloaded
tasks.

If we imagine that there is an ideal global resource manage⁃
ment and code scheduling facility or tool that can obtain the in⁃
formation online about dynamics of the computing device, Mi⁃
cro cloud and cloud server, with the help of such a facility,
Bob could move his task to F1 and Alice could reassign her
task at E2 to leverage the more powerful computation resourc⁃
es to execute their tasks. Here we assume that the overhead of
code and data transferring can be omitted compared with the
achieved performance and the network link capacity and char⁃
acteristics should be kept at a same level.

Based on the above observations and considerations, we ad⁃
vocate that novel resource management and code scheduling
mechanisms are required to improve the performance of
offloaded functions or tasks for end users and/or to achieve a
more efficient global resource utilization. Here, we move to dis⁃
tributed approaches where the scheduling decisions are made
independently by an end user or each offloaded function/task.
To adhere to a realistic scenario, we assume that information
about the dynamics of computing devices, Micro clouds and

cloud servers is presented online, not available as a priori, just
before a scheduling decision is made. Therefore, from the per⁃
spective of an end user, they can obtain these information to
choose or select optimal or near ⁃optimal machines to execute
their functions/tasks. We also assume that the code/data up⁃
loading (transferring) or task migration process are standard⁃
ized and can be carried out across different computing devices,
Micro clouds, and clouds to form a virtually federal computing
system. Considering the reality of industry standardization and
industry alliance, we think this assumption is also realistic.

Therefore, we take a user⁃centric approach to schedule the
tasks/codes to run at the selected optimal places or machines
based on the benefits of end users from time to time, not just of
cloud providers. In this way, the resource management and
code scheduling of the whole system consisting of local, edge,
and cloud is logically unified from the viewpoint of an end us⁃
er. Note that the computing devices, Micro clouds or cloud
servers are still owned and managed by their owners and they
just make a logically federal computing system by interactions
and agreements.

From a user⁃centric view, the virtually unified Internet com⁃
puting environment consisting of data centers and clouds is at
the core, Nano data centers (consisting of standard servers or
routers, Wi⁃Fi points, and base stations with available comput⁃
ing capacities) and Micro clouds at the edge, and peer comput⁃
ing devices such as desktop PCs, tablets, and smart phones at
the leaf. Based on this view, the resource management and
code scheduling mechanism helps end users to leverage the re⁃
sources of such a virtual system as a whole and achieve the
most benefits. In summary, a user⁃centric approach to resource
management and code scheduling encompasses the following
elements:
1) Human⁃centered design: Human⁃centered design considers

humans as an important factor in designing and developing
a mechanism. First, humans should naturally interact with
the system and impact the system behavior. Second, hu⁃
mans should be put in the control loop, so that users can
take or retake control of their information. This leads to the
design of novel crowdsourced and informed scheme where
users control the information flows. Finally, the human⁃cen⁃
tered design also calls for novel and innovative forms of hu⁃
man⁃centered applications.

2) User ⁃ controlled decisions: The decision ⁃making about the
resource management and code scheduling is under the full
control of end users. First, end users can choose and obtain
all needed information about their nearby peer devices, fog/
edge servers, and/or cloud servers. Second, end users are
able to freely coordinate with computing devices or servers
surrounding them to assign or delegate computation synchro⁃
nization or storage to other computing devices or servers se⁃
lectively. Finally, end users can get the status of their
offloaded tasks and decide where and how to reassign their
tasks to another computing device or server based on their

Special Topic

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

ZTE COMMUNICATIONSZTE COMMUNICATIONS06 October 2017 Vol.15 No. 4

4



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

own intentions.
3) Local or edge proximity: It is more efficient to communicate

and distribute data among nearby computing devices or serv⁃
ers than to use resources far away from end users. Here, of
course, nearby can be understood both in a physical sense
and a logical sense.

4) Local or edge trust: Personal and social sensitive data is
clearly located in the local or the edge under the control of
end users. Therefore, the control of trust relation and the
management of sensitive information flows in a secure and
private way must also belong to the end user.

2.2 Unifying Resource Management and Code Scheduling
in a Transparent Manner

In Section 2.1, we advocate for a novel resource manage⁃
ment and code scheduling mechanism that virtually unify and
schedule the resources across the local, peer, edge, and cloud
and leverage these resources to execute functions or tasks for
an end user. However, even with the information about Micro
cloud dynamic or cloud dynamic is acquired, it is still very
hard for a common end user to choose and select where to up⁃
load and execute their codes. Therefore, an intelligent facility
or tool should be developed to automate the assignment or reas⁃
signment process of offloaded tasks on behalf of end users, in
order to make an easy and transparent manner to interact with
such a virtual and complex system. Several research efforts
have been done to enable an easy and transparent manner to
use emerging complex computing systems [14], [15]. Here, we
follow the concept of transparent computing as a basis for de⁃
veloping the unified resource management and code schedul⁃
ing mechanism. To sum up, a transparent approach to resource
management and code scheduling encompasses the following
elements:
1) Easy⁃to⁃use interface: The interface for end users should be

easy to use, at least keeping the same experience of offload⁃
ing tasks to a cloud. Novel and easy ⁃ to ⁃ use interface are
called for to make the code scheduling across different
types of computing devices and servers much easier.

2) Hassle ⁃ free management: End users should just focus on
their tasks, not the techniques about the installation, mainte⁃
nance, and management of such a scheduling mechanism.
This means that the techniques need to be transparent to
end users and make the complex system of systems as a sin⁃
gle system.

3) Intelligent decision⁃making: As it is very hard for humans to
handle the information obtained from time to time and make
a decision where and how to schedule the codes to execute,
the novel mechanism or approach could semi⁃autonomously
or autonomously help end users to make decisions of place⁃
ment or reassignment according to their requirements. Of
course, end users can intervene the process by some means.

4) Adaptive reaction: Due to the continuous changing charac⁃
teristics of cloud servers, the new mechanism should also

adaptively react to the changed environment. First, it should
sense the changes of the hosted servers and the candidate
servers that could be reassigned. Second, it should make a
decision weather a reassignment is needed. Finally, it
should select and reassign the code to another appropriate
server to finish the remaining task.

3 Software⁃Defined Code Scheduling
Framework with Capacity and
Performance Monitoring
In this section, we illustrate our vision of a novel transparent

and user ⁃ centric approach to resource management and code
scheduling by presenting a software ⁃ defined code scheduling
framework with capacity and performance monitoring facilities
as a case study. As shown in Fig. 3, the framework has three
parts: the monitoring facilities (MF), scheduling engine (SE),
and decision engine (DE). The MF periodically acquires the in⁃
formation about task performance and capacity of any ma⁃
chines in the concerned scheduling domain. If an end user
wants to initiate a scheduling process, the SE gets the needed
inforamtion from the MF and sends the predefined scheduling
policy and the related information to the intellegent DE. The
DE makes a scheduling strategy by using various intelligent
scheduling algorithms. An end user can initiate a scheduling
process periodically or by giving an instruction through defin⁃
ing the scheduling policy for her/his tasks, e.g., the task perfor⁃
mance degrading to an unsatisfying level.

To meet diverse scheduling requirements of various kinds of
end users, end applications, and usage scenarios, the schedul⁃
ing polices for different end users or tasks could be defined
and specified in advance by a graphical tool or a specific police⁃
defining language.

The framework provides various selections and places for
computation and storage of end applications. This characteris⁃
tic can be used to improve the performance of offloaded task
and thus the user experience of end users by assigning compu⁃
tation and storage at appropriate machines. For example, the

▲Figure 3. Software⁃defined scheduling framework with monitoring
facility.

Peer device Wi⁃Fi
Mobile device

Base station

Peer device

Fog/edge servers Cloud servers

Information
acquirement

Sheduling
decision

Monitoring facility
•Perfomance metrics
•Capacity metrics

Decision engine
•Scheduing algorithms
•Scheduing strategy

Scheduling engine
•Policy specification
•Strategy enforcement

ZTE COMMUNICATIONSZTE COMMUNICATIONS 07October 2017 Vol.15 No. 4

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

Special Topic

5



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

computation can be carried out at four kinds of machines, i.e.,
L, P, E, C, which denote the local device, peer device, fog/edge
server, and cloud server, respectively.

Given a computing task, the computation time of the task
would be the sum of time consumed by different stages. Typi⁃
cally, there are five stages of the life of a task as follows.
1) Preparation: Once a new task is generated by an end user,

the scheduler or dispatcher will choose one or several desti⁃
nation peer devices, Micro clouds, or clouds for her/him.
Then the needed code and any input data required for the
initialization of the task are transferred to the destinations.
Finally, the task will be executed at the selected peer devic⁃
es, Micro clouds, or clouds.

2) Assignment: Once the required code and data have been up⁃
loaded to the destination, a local scheduler or dispatcher is
responsible for the assignment of the task to a specific pro⁃
cess at the peer devices, or a specific fog/edge or cloud serv⁃
er.

3) Execution: This is the actual processing of the offloaded
task/code. A new execution entity, such as a concrete pro⁃
cess or a virtual machine is created for the specific task at
the selected machine, and it starts to execute immediately.

4) Reassignment: The instance of the executed task/code may
be transferred from its current machine to a new one to con⁃
tinue execution there for various reasons. As mentioned be⁃
fore, this reassignment stage may occur multiple times dur⁃
ing the task execution. For the further execution of the task,
the accompanying related data required for the initialization
of the new execution instance has to be transferred to the
new destination machine. Note that the reassignment,
though optional, may occur several times during the lifetime
of a task and may cross different computing devices, Micro
clouds or clouds.

5) Outcome: At this stage the mobile end user retrieves the fi⁃
nal results. We assume that once the whole processing is
completed, the final data are immediately downloaded by
the user through the current access technology or forwarded
to another place to store.
The total time of finishing the offloaded task is the sum of

the time spent at these different stages. Obviously, it depends
on several factors. First, the selected machine at the assign⁃
ment or reassignment stage mainly affects the execution perfor⁃
mance because different computing devices or servers have dif⁃
ferent compute and storage capacity. Second, the constantly
changing capacity of the selected machine due to the execution
of other offloaded tasks also has an impact on the considered
tasks. Third, the scheduled reassignment stage itself may sig⁃
nificantly affect the execution due to the needed transferring of
codes or data. Thus, the scheduling policy of reassignment, the
times of the reassignment, and the selected reassigned ma⁃
chine would have an impact. Finally, the mobility of the end
user may make the original scheduling decision inefficient or
invalid. All of these factors, even if possible, are very hard to

accurately predict and make an optimal scheduling decision.
Therefore, it is very challenging to ensure that a scheduling
scheme for an offloaded computation task is an optimal sched⁃
uling. Considering the situations in the real world, a realistic
solution must be given on time to respond to the scheduling de⁃
mand. We call for further researches to deal with these new
challenges in the post⁃cloud era.
3.1 Monitoring Facilities of Capacity and Performance

If an end user or task initiates a scheduling periodically or
due to the observation of performance degradation, the first
thing to do for the framework is to learn about the current sta⁃
tus of the entire system.

To collect performance metrics of the computation task and
the capacity of the peer devices, nearby fog/edge servers, or
cloud severs, the MF employs a proxy that resides inside the lo⁃
cal and peer devices, nearby fog/edge servers or cloud servers.
These proxies periodically collect the performance metrics of
computation tasks and the capacity metrics of related candi⁃
date destination machines (e.g., CPU and memory capacity and
utilization) and then send all the needed information to the SE
to form a scheduling decision.

The selection of metrics is critical for the usability of a moni⁃
toring facility. The low⁃level metrics of the physical machines,
such as CPU and memory utilization, are easy to collect, but
they do not meet the requirements of some types of applica⁃
tions. The high⁃level metrics of software applications, such as
click response, are difficult to collect and specific to certain
types of applications. To explore, we develop a tool to choose
the appropriate metrics by using a machine learning method
based on historical usage data or conducting real⁃world experi⁃
ments under different usage scenarios. These metrics can be
specified automatically or manually by system administrators.
3.2 Software⁃Defined and Adaptive Code Scheduling

With the assistance of the above monitoring facilities, we de⁃
velop a software⁃defined scheduling engine that can schedule
the code in a predefined way or adapt to the changing comput⁃
ing environment based on the monitoring of the task perfor⁃
mance in a timely manner. For example, if the performance
metric of the monitored task is below a threshold, then the
scheduling engine could be triggered, and the scheduling poli⁃
cy predefined by end users would be read and analyzed. Then,
all the needed information is sent to the decision engine to
form a scheduling strategy, which includes where and how to
execute the computation or storage. The decision engine runs a
scheduling algorithm and then obtains a scheduling strategy
based on the current system status according to the predefined
scheduling policy or adaptively learns a scheduling policy
based on artificial intelligent rules from the changes occurred
in the whole system status before. After getting a scheduling
strategy from the decision engine, the scheduling engine takes
actions to enforce the scheduling strategy by interacting with

Special Topic

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

ZTE COMMUNICATIONSZTE COMMUNICATIONS08 October 2017 Vol.15 No. 4

6



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

the selected peer devices, Micro clouds, or clouds. The whole
scheduling process is illustrated by Algorithm 1.

Algorithm 2 gives a general example of scheduling algo⁃
rithm for the proposed framework. Considering that obtaining
the optimal placement is time consuming and unnecessary in
the real world, several heuristic algorithms are designed for the
decision engine to run under different usage scenarios. The
end user can give a rule to run any scheduling algorithm by
specifying the scheduling policy in the scheduling framework.
Therefore, the scheduling is software ⁃ defined and controlled

by the current system status and the enforced scheduling poli⁃
cy. Algorithm 3 gives a heuristic example of scheduling algo⁃
rithm. Here, the algorithm just uses the network performance
to predict the actual execution performance of the scheduled

Algorithm 1: Software⁃defined code scheduling process
Input:
The set of performance metrics: M1, M2, ..., Mn
The specification file of scheduling policy: F;

Output:
Scheduling strategy S ;

Step 1: Retrieve and analyze monitored metrics
Initialize performance metrics: M1, M2, ..., Mn ⇐ NULL;
for each i ∈[1, n] do
if Mi is defined then

Obtain Mi from MF;
end if

end for

Step 2: Retrieve and analyze scheduling policy

initialize scheduling condition: Con ⇐ NULL;
retrieve F;
for each i ∈[1, n] do
if Mi is defined in F then

Con = Con ∪ Mi ;
end if

end for

Step 3: Judge and select the predefined scheduling algorithm
if Con ≠ NULL then

retrieve scheduling algorithm A from F ;
return A ;

else
return NULL;

end if

Step 4: Form a scheduling strategy
if Con ≠ NULL and A ≠ NULL then

run scheduling algorithm A ;
return S ;

else
return NULL;

end if

Algorithm 2: A general code scheduling algorithm
Input:
The performance metric: Mn
The threshold of the performance metric: Tre;
Output:
Place to execute the code: D;
Step 1: Estimate the performance at different machines
initialize the set of place candidates: Pls ⇐ NULL;
for each i ∈ L, P, N,C do
for each j ∈ N,C do
Estimate the code preparation performance TRj ;
Estimate the code transportation performance TTj,i ;
Estimate the code execution performance TEi ;
Calculate the whole performance T i,j=TRj +TTj,i +TEi

if T i ,j ≥ Tre then Pls = Pls ∪ {i, j }
end if

end for
end for

Step 2: Choose the best place to execute the code
if Pls ≠ NULL then
Choose the best performance candidate from Pls;
return {i, j };

else
return NULL;

end if

Algorithm 3: A simple heuristic code scheduling algorithm
Input:
The network performance metric: Mnet
The threshold of the metric: Tre ;

Output:
Place to run the code: D ;

Step 1: Estimate the performance at different machines
initialize the set of place candidates:Places ⇐ NULL;
for each i ∈ L , P, N,C do
Estimate the value of M net to Net i ;
if Net i ≥ Tre then Places = Places ∪ i
end if

end for

Step 2: Choose the best place to run the code

ZTE COMMUNICATIONSZTE COMMUNICATIONS 09October 2017 Vol.15 No. 4

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

Special Topic

7



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

code, significantly simplifying the implementation complexity.
Note that the network performance in the exemplary schedul⁃
ing policy and the scheduling algorithm (Algorithm 3) is just
for illustration and not specified. If the network performance
means network bandwidth, the condition judgement of Neti ≥
Tre is established. However, if it means network delay, the con⁃
dition may be set as Neti ≤ Tre.

4 Pilot System and Preliminary Results

4.1 Pilot System
We developed a pilot system using commercial off⁃the⁃shelf

desktop machines and servers to demonstrate the feasibility
and effectiveness of the proposed software⁃defined code sched⁃
uling framework based on the transparent computing [15].

The pilot system uses VM technology to encapsulate the
codes of OSes and their applications. The computation or stor⁃
age can be scheduled and executed on three types of machines
or servers, namely, local machines, nearby fog/edge servers,
and remote cloud servers.

To simplify the implementation, a heuristic threshold⁃based
scheduling algorithm is designed to run when the performance
is below a predefined threshold. More details about the pilot
system can be found in [16].
4.2 Preliminary Results

Two sets of experiments are conducted to show the effective⁃
ness of the proposed framework. In all experiments, local ma⁃
chines use Intel Core i7 ⁃4790 (8 cores, 3.6 GHz) chips, with
12 GB DDR3 RAM, a 1TB Seagate 7200 rpm hard disk, and a
1 Gbps Realtek RTL8139C (plus Fast Ethernet) NIC. The near⁃
by fog/edge servers use Intel Xeon e5 ⁃ 2620 (24 cores, 2.0
GHz) chips, with 24 GB DDR3 1333 RAM, one 1 TB Western
Digital 7200 rpm RAID5 hard disk, and a 1 Gbps NetXtreme
BCM 5720 Gigabit Ethernet network card. Local machines and
nearby servers are connected by a TP⁃Link TLSG⁃1048 Ether⁃
net switch with 48 1 Gbps ports. The OS and software code are
encapsulated as VMs and scheduled to run at the local ma⁃
chines, nearby servers, and Amazon cloud servers, which are
configured with one virtual CPU, with 2 GB memory and a 50
GB hard disk. The nearby servers use XenServer 6.0.2 OS.
The local machines use Ubuntu 14.04, and a VM based on Vir⁃
tualBox 4.3.36 runs on every machine. The VMs run Windows
7 SP1 with 1024 × 768 (32⁃bit color depth) resolution. The lo⁃

cal machines access the VM running on the nearby server
through SSH virtual network computing (VNC) 1.0.29 and ac⁃
cess the VM running on the Amazon WorkSpace cloud server
through Amazon WorkSpace 2.0.8205 client.

First, we evaluate the performance under different scenarios
with standard 2D graphics test suite of PassMark Performance
Test 8.0. This test suite includes operations of drawing lines,
bitmaps, fonts, text, and GUI elements. To be more specific,
eight tests are: simple vector, complex vector, fonts and text,
Windows interface, image filters, image rendering, direct 2D,
and overall 2D performance. We also compare the performance
in three scenarios: scheduling code to run at the remote Ama⁃
zon cloud server, the fog/edge server (accessing with VNC),
and the local machine.

As shown in Table 1, the overall 2D performance of execut⁃
ing code on local machines outperforms that on the nearby fog/
edge server and the fog/edge outperforms the cloud. This
means that the performance is worse when the software codes
are executed farther away from the end user. However, in the
test of Windows interface, the fog/edge gets a slightly better
performance than the other two, and in the test of image render⁃
ing, the cloud achieves the best performance. These two tests
show that the performance will be better if the codes are sched⁃
uled to run at appropriate machines.

Second, we evaluate the video playback performance by
playing a 21 ⁃ second video clip, which has 320 × 240 pixels
and 24 frames per second, in the 1024 × 768 resolution with
Windows Media Player 12.0. The performance is measured
with slow⁃motion benchmarking [17], which uses a packet mon⁃
itor to capture network traffic for quantifing performance in a
non ⁃ invasive manner. The video playback quality defined in
the slow ⁃ motion benchmarking is taken as the performance
metric. The results are shown in Fig. 4. We evaluate the perfor⁃
mance under different scheduling strategies. In each schedul⁃
ing strategy, the network bandwidth is changed to see how it af⁃
fects the video quality. The video quality of the local machine
with 2 Mb bandwidth (nearly 1) is better than that of the fog/
edge server (nearly 0.11 with VNC) and the remote Cloud serv⁃
er (nearly 0.25) when the codes are scheduled to run at the lo⁃
cal machine. This result indicates that adaptive scheduling can

if Pls ≠ NULL then
Choose the best performance candidate from Places;
return i ;

else
return NULL;

end if

▼Table 1. Performance of 2D graphics (Scores)

Test
Simple vector
Complex vector
Fronts and text

Windows interface
Image filters

Image rendering
Direct 2D

Overall 2D Performance

Cloud
29

109.1
136.1
115.5
608
575
6.6

481.5

Fog/Edge
28.6
171.6
151.7
116.6
672
513
8.5
554

Local
38.8
191.5
159.9
109
725
507
13.8
659

Special Topic

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

ZTE COMMUNICATIONSZTE COMMUNICATIONS10 October 2017 Vol.15 No. 4

8



D:\EMAG\2017-10-59/VOL15\F4.VFT——9PPS/P

sharply enhance video playback quality, and such enhance⁃
ment substantially improves the end⁃user experience. A com⁃
parison of the video quality with different network bandwidths
shows that the video quality is highly sensitive to the band⁃
width. This also explains that our adaptive scheduling frame⁃
work can achieve better performance by scheduling the soft⁃
ware codes to run at machines with higher network bandwidth
to end users.

5 Conclusions
The recently emerging computing paradigms, such as fog/

edge computing, have brought great changes to the computing
environments for mobile end users and also numerous opportu⁃
nities for creative applications. However, the current cloud ⁃
centric or server⁃centric resource management and code sched⁃
uling mechanisms are not suitable in the complex computing
environment that consists of different Micro clouds or clouds.
Thus, we advocate for new and novel resource management
and code scheduling mechanism to deal with such a challenge
and elaborate the details of this vision. To illustrate this vision,
we proposed a software ⁃ defined scheduling framework to as⁃
sign or reassign computation and/or storage to appropriate ma⁃
chines, including peer computing devices, nearby fog/edge
servers and remote cloud servers. To demonstrate the effective⁃
ness in real world, we also developed a pilot system. The pilot
system shows that our vision and approach have good potential
to further improve the performance of end applications and us⁃
er experience in today’s emerging computing environments by
adaptively scheduling the codes to execute on appropriate ma⁃
chines. Further research and exploration are also called for re⁃
alizing such a transparent and user⁃centric approach to global⁃
ly achieve efficiency of resource utilization and optimal perfor⁃
mance of code execution.

▲Figure 4. Video quality performance.

References
[1] B. Sanou. (2017, July 22). ICT Facts and Figures 2016 [Online]. Available: http://

www.itu.int/en/ITU⁃D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

[2] H. Flores, P. Hui, S. Tarkoma, et al.,“Mobile code offloading: from concept to
practice and beyond,”IEEE Communication Magazine, vol. 53, no. 3, pp. 80-
88, Mar. 2015. doi: 10.1109/MCOM.2015.7060486.

[3] N. Fernando, S. W. Loke, and W. Rahayu,“Mobile cloud computing: a survey,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 84-106, Jan. 2013. doi:
10.1016/j.future.2012.05.023.

[4] D. Chu, A. Kansal, J. Liu, and F. Zhao,“Mobile apps: it’s time to move up to
condos,”in Proc. 13th Usenix Conference on Hot Topics in Operating Systems,
California, USA, May 2011, pp. 16-16.

[5] N. Tolia, D. Andersen, and M. Satyanarayanan,“Quantifying interactive experi⁃
ence on thin clients,”Computer, vol. 39, no. 3, pp. 46- 52, Mar. 2006. doi:
10.1109/MC.2006.101.

[6] A. Williamson (2010, Jan. 12). Has Amazon EC2 Become over Subscribed [On⁃
line]. Available: http://alan.blog ⁃ city.com/has_amazon_ec2_become_over_sub⁃
scribed.htm

[7] A. Iosup, S. Ostermann, M. N. Yigitbasi, et al.,“Performance analysis of cloud
computing services for many⁃tasks scientific computing,”IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, pp. 931-945, Jun. 2011. doi:
10.1109/TPDS.2011.66.

[8] Mixpanel Engineering. (2011, Oct. 27). Mixpanel: Why We Moved Off the Cloud
[Online]. Available: https://code.mixpanel.com/2011/10/27/why⁃we⁃moved⁃off⁃
the⁃cloud

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,“Fog computing and its role in
the internet of things,”in Proc. MCC’2012, New York, USA, Aug. 2012, pp.
13-16. doi:10.1145/2342509.2342513.

[10] H. Li, G. Shou, Y. Hu, and Z. Guo,“Mobile edge computing: progress and chal⁃
lenges, ”in Proc. 4th IEEE International Conference on Mobile Cloud Comput⁃
ing, Services, and Engineering (MobileCloud), Oxford, UK, Mar. 2016, pp. 83-
84. doi: 10.1109/MobileCloud.2016.16.

[11] W. S. Shi, J. Cao, Q. Zhang, et al.,“Edge computing: vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Jun. 2016. doi:
10.1109/JIOT.2016.2579198.

[12] Y. W. Wang. (2015, Nov. 10). The Initial Definition of Dew Computing [On⁃
line]. Available: http://www.dewcomputing.org/index.php/2015/11/10/the⁃initial
⁃definition⁃of⁃dew⁃computing

[13] L. Gkatzikis and I. Koutsopoulos,“Migrate or not? exploiting dynamic task mi⁃
gration in mobile cloud computing systems,”IEEE Wireless Communications,
vol. 20, no. 3, pp. 24-32, Jun. 2013. doi: 10.1109/MWC.2013.6549280.

[14] R. Murch, Autonomic Computing. USA: IBM Press, 2004.
[15] Y. Zhang, K. Guo, J. Ren, et al.,“Transparent computing: a promising network

computing paradigm,”IEEE/AIP Computing in Science & Engineering, vol. 19,
no. 1, pp. 7-20, Jan. - Feb. 2017. doi: 10.1109/MCSE.2017.17.

[16] Y. Zhou, W. Tang, D. Zhang, and Y. Zhang,“Software⁃defined streaming⁃based
code scheduling for transparent computing,”in Proc. 2016 International Con⁃
ference on CBD, Chengdu, China, Aug. 2016, pp. 296- 303. doi: 10.1109/
CBD.2016.058.

[17] J. Nieh, S. J. Yang, and N. Novik,“Measuring thin ⁃client performance using
slow⁃motion benchmarking,”ACM Transactions on Computer Systems, vol. 21,
no. 1, pp. 87-115, Feb. 2003. doi: 10.1145/592637.592640.

Manuscript received: 2017⁃05⁃10

5.0
Bandwidth (Mb)

1.0

Vid
eo

qua
lity

2.00.5

0.8

0.6

0.4

0.2

0

Cloud
Fog/edge
Local

ZHOU Yuezhi (zhouyz@mail.tsinghua.edu.cn) is an associate professor in the De⁃
partment of Computer Science and Technology, Tsinghua University, China. His re⁃
search interests include distributed system, mobile network, and transparent com⁃
puting system.
ZHANG Di (dizhang@tsinghua.edu.cn) is a postdoctoral researcher in the Depart⁃
ment of Computer Science and Technology, Tsinghua University, China. His re⁃
search interests include distributed system, mobile network, and transparent com⁃
puting system.
ZHANG Yaoxue (zyx@csu.edu.cn) is a professor in the School of Information Sci⁃
ence and Engineering, Central South University, China. His research interests in⁃
clude transparent computing, pervasive computing, and big data.

BiographiesBiographies

ZTE COMMUNICATIONSZTE COMMUNICATIONS 11October 2017 Vol.15 No. 4

A Transparent and User⁃Centric Approach to Unify Resource Management and Code Scheduling of Local, Edge, and Cloud
ZHOU Yuezhi, ZHANG Di, and ZHANG Yaoxue

Special Topic

9


