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Many science and engineering applications involve solving
a linear least ⁃ squares system formed from some field mea⁃
surements. In the distributed cyber ⁃ physical systems (CPS),
each sensor node used for measurement often only knows
partial independent rows of the least ⁃ squares system. To
solve the least ⁃ squares all the measurements must be gath⁃
ered at a centralized location and then perform the computa⁃
tion. Such data collection and computation are inefficient be⁃
cause of bandwidth and time constraints and sometimes are
infeasible because of data privacy concerns. Iterative meth⁃
ods are natural candidates for solving the aforementioned
problem and there are many studies regarding this. However,
most of the proposed solutions are related to centralized/par⁃
allel computations while only a few have the potential to be
applied in distributed networks. Thus distributed computa⁃
tions are strongly preferred or demanded in many of the real
world applications, e.g. smart⁃grid, target tracking, etc. This
paper surveys the representative iterative methods for distrib⁃
uted least⁃squares in networks.
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1 Introduction
any physical phenomena can be described by
partial differential equations [1] which forms
large sparse system of linear equations after
further discretized. Problems, such as state es⁃

timation, target tracking and tomography inversion, are often
formulated as a large⁃scale linear system based on some field
measurements. Those field measurements may contain errors,
thus an extra amount of measurement is often sampled to form
an over⁃determined linear system:

Ax≈ b , (1)
where A ∈ℝm × n( )m≥ n , x ∈ℝn and b ∈ℝm . Such extra info⁃
rmation can smooth out the errors but produces an overdeter⁃
mined system that usually has no exact solution. The method of
least ⁃ squares is a common solution to the above problem and
can be defined as

min
x
 Ax - b 2 . (2)

The coefficient A is often modeled from the data obtain from
sensors used for observing the physical phenomena such as cy⁃
ber physical system. Each sensor or node observes partial phe⁃
nomena due to the spatial and temporal restriction and thus on⁃
ly forms partial rows of the least ⁃ squares systems. The large⁃
scale cyber ⁃ physical systems are often built on a mesh net⁃
work, which could be a wired, wireless or wired ⁃wireless hy⁃

brid multi⁃hop network. For instance, the problems from target
tracking, seismic tomography and smart grid state estimation
all have an inherently distributed system of linear equations.
However, the least squares method used currently for solving
these problems assumes a centralized setup, where partial row
information from all the nodes are collected in a server and
then solved using the centralized least⁃square algorithm.

In many of those cyber ⁃ physical systems, the distributed
computation in mesh networks is strongly demanded or pre⁃
ferred over the centralized computation approach, due to the
following reasons (but not limited to):
1) In some applications such as imaging seismic tomography

with the aid of mesh network, the real ⁃ time data retrieval
from a large⁃scale seismic mesh network into a central serv⁃
er is virtually impossible due to the sheer amount of data
and resource limitations. The distributed computation may
process data inside the network in real time to reduce the
bandwidth demand as well as distribute the communication
and computation load to each node in the network.

2) The mesh network may be disruptive in real world and the
data collection and centralized computation may suffer from
node failure or link disruption. These become a bottleneck
especially when the node failure or link disruption happens
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near to the sink node which leads to loss of high volume of
raw data. However, with distributed computation, the re⁃
maining nodes in the network can finish the computation
and get the approximated results.

3) In smart grid state estimation, the data collection for central⁃
ized computation is even infeasible due to data privacy con⁃
cerns or inter⁃agency policy constraints.

4) In some applications that need real⁃time control, the distrib⁃
uted computation also has advantage over centralized
schemes, since some decisions can be made locally in real
time. The current state of the art computational device such
as smart phones enables us to perform in⁃network comput⁃
ing and carry out distributed computation over a mesh net⁃
work.
Iterative methods are natural candidates when it comes for

large sparse system and especially for distributed computation
of least⁃squares. Although there are a lot of studies on iterative
least ⁃ squares, most of them are concerned with the efficiency
of centralized/parallel computation, and only a few are explicit⁃
ly about distributed computation or have the potential to be ap⁃
plied on mesh networks. In mesh networks, since the comput⁃
ers need to communicate with each other through messages
passing over a multi ⁃ hop network, the key challenges are
speeding up the computation and reducing the communication
cost. More attention shall be paid to communication instead of
the computation cost, especially when solving a big problem in
a large⁃scale mesh network.

In this paper, we select and survey the representative itera⁃
tive methods from several research communities. These meth⁃
ods have the potential to be used in solving least squares prob⁃
lem over mesh networks. Here, a skeleton sketch of each algo⁃
rithm is provided and later we analyze the time⁃to⁃completion
and communication cost of these algorithms and provide the
comparison. Some of the algorithms presented here were not
originally designed for meeting our requirements, so we slight⁃
ly modify them to maintain consistency.

The rest of the paper is organized as follows. In section 2,
we present the network model and the evaluation criteria for
comparison. Then in section 3, we describe the state of art on
surveyed algorithms in details, analyze and compare their com⁃
munication costs and time⁃to⁃completion. Finally, we conclude
the paper in section 4.

2 Model and Assumption
We denote a wired and/or wireless mesh network with N

nodes v1, ...,vN which form connected graph and can be
reached through multi⁃hop message relays. Without loss of gen⁃
erality, we assume that the diameter of the network is logN (i.
e., any message can be sent from one node to another through
at most logN hops). We also assume that each node has a sin⁃
gle radio and the link between the neighboring nodes has a
unit bandwidth. Therefore, the communication delay of one

unit data delivery between direct neighbors (either through a
unicast to one direct neighbor or multicast/broadcast to all di⁃
rect neighbors) would be one unit time. It is noted that the link
layer supports broadcast, which is often true in many mesh net⁃
works. If the link layer only supports unicast, the analysis can
be similarly done by considering a one⁃hop broadcast as multi⁃
ple unicast and we skip this analysis as it is trivial. We also un⁃
derstand that the link layer communication may take more
than one unit time for one unit data due to network interfer⁃
ence and media contentions. Therefore, we classify the commu⁃
nication patterns in a mesh network into three categories, uni⁃
cast (one⁃hop or multi ⁃hop), one⁃hop broadcast (local broad⁃
cast to all neighbors) and network flooding (broadcast to all the
nodes in network). For simplicity and convenience, in the rest
of the paper we use the term“broadcast”for local broadcast to
one ⁃ hop neighbors and“flood”for network flooding. We use
the aforementioned assumption on communication cost and de⁃
lay for the quest of the fundamental limit of each surveyed algo⁃
rithm in an ideal mesh network.

We assume a random communication network (has to be a
connected graph) in our analysis. The influence of the commu⁃
nication network to the performance has been studied in [2],
[3]. It is known that the network connectivity ratio, which is de⁃
fined as the number of edges divided by the number of all pos⁃
sible edgeswill affect the performance. The algorithms are sup⁃
posed to obtain a faster convergence speed when each node
has higher number of neighbors. Higher neighbor count means
more nodes can receive the information after one transmission
of certain node. It accelerates information diffusion among all
the nodes in the network and thus help all the nodes reach con⁃
sensus faster. To conduct a fair comparison, we use the same
communication network (topology) for all the benchmarks.

For comparison and evaluation, the following two perfor⁃
mance criteria are considered:
•Communication cost: To solve a least ⁃ squares problem of

large ⁃ size system, communication cost has a big influence
on the algorithm performance. Here we refer the communica⁃
tion cost as the cost involved in the messages exchanged in
the mesh network during a single iteration of the iterative
methods. Since iterative methods typically converge after
many iterations, the communication cost of the iterative
methods depends on both the cost in one iteration and the it⁃
eration number.

•Time⁃to⁃completion: The time taken for a network to finish
one iteration in the iterative method is referred as time⁃to⁃
completion in this paper. Note that it is different from the
computational time complexity and shall include the consid⁃
eration of the message size and number of hops the packet
has traversed.
We also focus on the analysis of communication delays for

time ⁃ to ⁃ completion while ignoring the computation time in
each node. The rationale is summarized as follows. First, the
cost of communication is very high in practice. We are highly
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constrained by the physical bandwidth and energy consump⁃
tion in large⁃scale sensor networks in particular. Furthermore,
the communication stage is much more time ⁃ consuming than
the computation step. It turns out that reducing the total com⁃
munication rounds is the key for speeding up the algorithm in
terms of time⁃to⁃completion.

The least⁃squares problem in (2) formed over the mesh net⁃
work is inherently distributed, i.e. each node vu only knows
part of A and b. We assume that each node in the network
holds mu =m/N consecutive rows of matrix A ∈ℝm × n and the
corresponding part of vector b. For example in Fig. 1, block A1

indicates the first m N rows of matrix A which is assigned to
node v1 along with the right hand side vector
b ={ }b1,…,bm N . Note that the algorithm surveyed in this paper
does not require that matrix A and b be equally partitioned
over the network. Here the assumption of equal partition is for
the simplicity of presentation and analysis and the new distrib⁃
uted equation takes the form:

Ax = b , (3)
where,
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æ

è

ç

ç
çç
ç

ç
ö

ø

÷

÷
÷÷
÷

÷
A1
A2⋮
AN

; b =
æ

è

ç

ç
çç
ç

ç
ö

ø

÷

÷
÷÷
÷

÷
b1
b2⋮
bN

; Au ∈ℝmu × n ; bu ∈ℝmu . (4)

The least squares problem takes the form minx Ax - b 2and since there is no central coordinator which has entire A
and b , the computation of optimum x has to be done distrib⁃
utedly. As mentioned above, the communication cost becomes
crucial for distributed solution over sensor network and the
goal of this paper is to survey various distributed least squares
algorithm originating from different domains. We also try to
compare different algorithms under similar criteria as men⁃
tioned above so that it provides the reader some basic differ⁃
ences between them and also help them to choose the type of
algorithms suitable for their application.

The notations used in this paper are described in Table 1.

3 Survey and Analysis
The methods for solving the linear least ⁃ squares problems

are typically classified into two categories, direct methods and
iterative methods. Direct methods are based on the factoriza⁃
tion of the coefficient matrix A into easily invertible matrices
whereas iterative methods solve the system by generating a se⁃
quence of improving approximate solutions for the problem.
Until recently direct methods were often preferred over itera⁃
tive methods [4] due to their robustness and predictable behav⁃
iors (one can estimate the amount of resources required by di⁃
rect solvers in terms of time and storage) [5], [6]. On the other
hand, a number of iterative methods have also been discov⁃
ered, which require fewer memory and are approaching the so⁃
lution quality of direct solvers [6]. The size of the least squares
problem arising from real world three⁃dimension problem mod⁃
els could be significantly large comprising hundreds of mil⁃
lions of equations as well as the unknowns. Despite such a
huge dimension, the matrices arising are typically sparse and
can be easily stored. Now given the dimension and sparsity
property of the matrix, iterative methods become almost manda⁃
tory for solving them [7]. Moreover, iterative methods are gain⁃
ing ground because they are easier to be implemented efficient⁃
ly in high⁃performance computers than direct methods [6].

The methods for solving least⁃squares problems in distribut⁃
ed networks can be classified into two categories, distributed
and decentralized (fully distributed) methods. We will discuss
it in detail in this section.
3.1 Distributed Least⁃Squares Methods

To achieve high performance in computation, researchers
have studied distributed iterative methods to solve large linear
systems/linear least ⁃squares problems [8], [9]. The researches
leverage both shared and distributed memory architecture. In
this section, we only present those distributed iterative meth⁃
ods that can be potentially distributed over a mesh network.
The Distributed Multisplitting (D ⁃ MS), Distributed Modified

▲Figure 1. Row partition of matrix A.

▼Table 1. List of notations

Notation
A,E,L,U,Q,R
x,y,a,b,r
α,β,δ,λ,γ

m,n
ℝ
N

Davg,Dmax

u,v
k

Definition
Matrices
Vectors
Scalars

Rows and columns of matrices
Real space
Network size

Average and maximum node degree in the network
Nodes in the network

Iteration number of iterative methods

1 2 3 … n-1 n
X X X X X

…… …… … …

X X X X X

…

…

X X X X X…

…… …… … …

…… …… … …

…… …… … …

X X X X X…

X X X X X…

X X X X X…

…
…

…
…

Indices
1

m/N
m/N+1

2m/N

m

m-m/N +1

Block

A 1

A 2

AN

…
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Conjugate Gradient Least ⁃ Squares (D ⁃ MCGLS), Distributed
Component ⁃ Average Row Projection (D ⁃ CARP), Distributed
Cooperative Estimation (D ⁃ CE), Distributed Least Mean
Squares (D ⁃ LMS), Distributed Recursive Least ⁃ Squares (D ⁃
RLS) methodsare discussed and compared, but only D ⁃ LMS
and D⁃RLS are analyzed in details in this paper since they are
more relevant and more promising than other distributed algo⁃
rithms.

Table 2 gives a summary of the communication cost and
time ⁃ to ⁃ completion of the selected algorithms running in the
distributed network. The details about the algorithm descrip⁃
tion and analysis are shown in Section 3. When the least ⁃
squares problem in (2) where A ∈ℝm × n( )m≥ n , x ∈ℝn and
b ∈ℝm is considered, we suppose that the iterative algorithm
converges within k iterations in the network, and Davg and
Dmax denote the average and maximum node degrees of the ne⁃
twork respectively. The algorithms discussed in this section
have been proved to be convergent, but the iteration number
highly depends on the matrix condition number; these algo⁃
rithms may need hundreds to thousands of iterations to con⁃
verge over a network with hundreds of nodes for a large sys⁃
tem. Besides, some algorithms either requires flooding commu⁃
nication in the network per iteration or a Hamiltonian path in
the network to perform the computation node by node.
3.1.1 Distributed Least Mean Squares Method

Schizas, Mateos and Giannakis [10]- [13] introduce the D ⁃
LMS algorithm. This algorithm lets each node maintain its own
local estimation and, to reach the consensus, exchange the lo⁃
cal estimation only within its neighbors. The advantage of the
methods like D⁃LMS and D⁃CE in signal processing is that on⁃
ly local information exchange is required. The problem is that
these methods may converge slow in a large⁃scale network.

In their discussion, the wireless sensor network is deployedto estimate a signal vector x* ∈ ℝn × 1 . Each node vu has a re⁃
gression vector Au( )k ∈ℝn × 1 , where k = 0,1,2, .... denotes the

time instants, and there is a observation bu( )k on time k ;
both of them are assumed to have zero mean. One global vector
b( )k : =[b1( )k …bN( )k ]T ∈ℝN × 1 is used for all the observations
on N nodes in the network. A( )k : =[A1( )k …AN( )k ]T ∈ℝN × n is
the regression vector combined over the network, and the glob⁃
al LMS estimator is then described as

x̂( )k = argmin
x
E[| ||b( )k - A( )k x |2] =

argmin
x ∑

u = 1

N

E[( ]bu( )k - AT
u ( )k x)2 . (5)

Let { }xu
N

u = 1 ∈ℝn represent the local estimation of the global
variable x of one node vu (each node has its own estimation
of the signal vector). In conjunction with these local variables,
we consider the convex constrained minimization problem as

{x̂u( )k }Nu = 1 = argmin
x ∑

u = 1

N

E[( ]bu( )k - AT
u ( )k xu)2 ,

s.t.xu = xu',u ∈N,u′ ∈Nu,
(6)

where Nu is the neighbor set of node vu .The equality constraints above only involve the local estima⁃
tions of the neighbors of each node and force an agreement
among each node’s neighbors. Since we assume that the net⁃
work is connected, the constraints above will introduce a con⁃
sensus in the network. We can finally have xu = xu' for all
u,u' ∈N . We find that the distributed estimation problem is
equivalent to the original problem in the sense that their opti⁃
mal solutions coincide such as x̂u( )k = x̂( )k , for all u ∈N .

To construct the distributed algorithm, the authors resort to
the Alternating Direction Method of Multipliers (ADMM) (algo⁃
rithm, and get the following two equations for estimation updat⁃
ing,

vu'u ( )k = vu'u ( )k - 1 + c2 ( )xu( )k - ( )xu'( )k +ηu'
u ( )k ,

u' ∈Nu，
(7)

xu( )k + 1 = xu( )k + μu[2Au( )k + 1 eu( )k + 1 -
∑
u' ∈Nu

( )vu'u ( )k - ( )vuu'( )k + η̄u'
u ( )k -

c∑
u′ ∈Nu

( )xu( )k - ( )x
u′( )k +ηu′

u ( )k ]，
(8)

where μu is a constant step ⁃ size and eu( )k + 1 : = bu( )k + 1 -
AT

u ( )k + 1 xu( )k is a local priori error. ηu'
u ( )k and η̄u'

u ( )k denote
the additive communication noise present in the reception of
xu'( )k and vuu'( )k . Algorithm 1 gives the description of the di⁃
stributed least mean square algorithm. In detail, during the
time instant k + 1 , node vu receives the local estimates
{xu'( )k +ηu'

u ( )k }u' ∈Nu
and plugs them into the equations above

to evaluate vu'u ( )k for u' ∈Nu . Each updated local Lagrange
multiplier {vu'u ( )k }u' ∈Nu

is subsequently transmitted to the corr⁃

Algorithm
D⁃MS

D⁃MCGLS
D⁃CARP
D⁃CE
D⁃LMS
D⁃RLS

Communication cost
kmN 2

( )k + 1 ( )m +N N + k( )n +N N

2knN
knN

kN ( )Davg + 1
( )n + n2 ( )N - 1

Time⁃to⁃completion
km( )N - 1

k( )m + n + 2 ( )N - 1
2n( )N - 1 + n logN

knDmax

2kDmax

( )n + n2 ( )N - 1
N is the network size, m × n( )m≥ n is dimensions of matrix A and k is the number of
iterations (usually m >>N and n >>N )
D⁃CARP: Distributed Component⁃Average Row Projection method.

D⁃CE: Distributed Cooperative Estimation methods.
D⁃LMS: Distributed Least Mean Squares method.

D⁃MCGLS: Distributed Modified Conjugate Gradient Least⁃Squares method.
D⁃MS: Distributed Multisplitting method.

D⁃RLS: Distributed Recursive Least⁃Squares method.

▼Table 2. Analysis of communication cost and time⁃to⁃completion
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esponding neighbor u' ∈Nu . Then upon reception of {vuu'( )k +
η̄u'

u ( )k )}u' ∈Nu
, the multipliers are jointly used along with

{xu'( )k +ηu'
u ( )k )}u' ∈Nu

and the newly acquired local data
{ }bu( )k + 1 ,Au( )k + 1 to obtain xu(k + 1) via the above equa⁃
tions. The ( )k + 1 ⁃st iteration is concluded after node vu broa⁃dcasts xu( )k + 1 to its neighbors.
Algorithm 1: D⁃LMS Method
Each node vu follows the same routines below

1. Arbitrarily initialize {xu( )0 }Ni = 1 and {vu'u ( )-1 }u' ∈Nu

i ∈N2. While not converged do
3. Broadcast xu( )k to neighbors in Nu

4. Update {vu'u ( )k }u' ∈Nu

5. Transmit vu'u ( )k to each u' ∈Nu

6. Update xu( )k + 1
end while

1) Communication Cost
Algorithm 1 is simple and only steps 3 and 5 involve com⁃

munication. Applied to system Ax = b , vectors xu( )k and
vu'u ( )k are both of length n (columns of A ). For example, in
step 3, node v1 needs to transmit xu( )k to all its neighbors; in
step 5, v1 needs to transmit different vu'u ( )k to different neig⁃
hbors (Fig. 2). Suppose that the average degree of network is
Davg , in each iteration, the communication cost of one node is
of n( )Davg + 1 , so the communication of the network is
nN( )Davg + 1 . Suppose that after k iterations (the iteration nu⁃
mber might be greater than the time instants, so after the k ⁃th
sample on node vu is involved, the first sample is used as the
( )k + 1 ⁃st sample), the algorithm converges and the total comm⁃
unication cost is knN( )Davg + 1 .

2) Time⁃to⁃Completion
In step 3 of Algorithm 1, node u needs to broadcast xu( )k

to all its neighbors. From the receiver side, each node needs to

receive different updates from all its neighbors, and then the
delay of the whole network depends on the maximum node de⁃
gree of the network since the algorithm is synchronous; this de⁃
lay is nDmax . In step 5, node u needs to send different vu'u ( )k
to different neighbors, the delay is also nDmax . The total com⁃
munication delay is then 2knDmax .
3.1.2 Distributed Recursive Least⁃Squares Method

Sayed and Lopes [14] developed a distributed least⁃squares
estimation strategy by appealing to collaboration techniques
that exploit the space⁃time structure of the data, achieving an
exact recursive solution that is fully distributed. This D ⁃RLS
strategy is developed by appealing to collaboration techniques
to achieve an exact recursive solution. It requires a cyclic path
in the network to perform the computation node by node. The
advantage of this method is the iteration number is fixed (the
network size) for a give set of data to solve a least⁃squares prob⁃
lem, but the problem is a large dense matrix needs to be ex⁃
changed between nodes.

The details and analysis of D⁃RLS strategy are given in this
section, and Algorithm 2 gives the classic RLS procedure
[15] .
Algorithm 2: Recursive Least⁃Squares Procedure
Initial: x-1 = x̄ and P-1 = I

1. for k≥0 do
2. xk = xk - 1 + gk[ ]b( )k - AT( )k xk - 1

3. gk = λ-1Pk - 1A( )k
1 +λ-1AT( )k Pk - 1A( )k

4. Pk =λ-1[P(k - 1) - gkAT (k)P(k - 1)]
end for

To distribute the exact algorithm for estimating the vector x
in the network of N nodes, each node vu has access to regres⁃
sors and measurement data Au( )k and bu( )k ,u = 1, ...,N ,
where bu( )k ∈ℝ and Au( )k ∈ℝn . At each time instant k , the
network has access to space⁃time data:

b( )k =
é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

b1( )k
b2( )k
⋮
bN( )k

and A( )k =
é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

A1( )k
A2( )k

⋮
AN( )k

, (9)

where b( )k and A( )k are snapshot matrices revealing the ne⁃
twork data status at time k . We collect all the data available
up to time k into global matrices b and A :

b =
é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

b( )0
b( )1
⋮
b( )k

and A =
é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

A( )1
A( )2

⋮
A( )k

. (10)

▲Figure 2. Communication pattern of D⁃LMS method.
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Note that here is equivalent to solving the least ⁃ squares
problem of Ax = b by partition A and b row ⁃wise and each
node has one partition of consecutive rows of A and b . Apply⁃
ing the RLS algorithm is different to the D ⁃ LMS estimator
since it gives the least ⁃squares solution of the whole block of
data Ax = b . Therefore, in the distributed RLS algorithm to
solve a normal least ⁃ squares problem, we use Au( )k to ind⁃
icate the row block on node vu but not only one vector collect⁃
ed at time instant k (we can treat it as all the data collected
till time k ).

By assuming an incremental path is defined across the net⁃
work cycling from node v1 to v2 and so forth, until node vN ,
The RLS algorithm can be rewritten as a distributed version in
Algorithm 3 [14].
Algorithm 3: D⁃RLS Method
ψ

( )k
0 = xk - 1 , P0,k =λ-1Pk - 1

1. for u = 1:N , node vu do
2. eu( )k = bu( )k - Au( )k ψ

( )k
u - 1

3. ψ
( )k
u =ψ( )k

u - 1 + Pu - 1,k
γ-1
u + AT

u ( )k Pu - 1,k Au( )k
Au( )k eu( )k

4. Pu,k =Pu - 1,k - Pu - 1,k Au( )k AT
u ( )k Pu - 1,k

γ-1
u + AT

u ( )k Pu - 1,k Au( )k
5. If u≠N then
6. vu send { }ψ

( )k
u ,Pu,k to node vu + 1

7. end if
end for

1) Communication Cost
In the distributed RLS algorithm, the communication is in

step 6. Each node shares with its successor node in the cycle
path of network the quantities { }ψ

( )k
u ,Pu,k , where ψ

( )k
u ∈ℝn

and Pu,k ∈ℝn × n . For example, node v1 receives the message
from v2 and sends it to v3 (Fig. 3). Therefore, in each itera⁃

tion, the communication cost only happens in one node and itis n + n2 . Since the algorithm can converge after one cycle in
the network, the total communication cost is ( )n + n2 ( )N - 1 .
Note that a Hamiltonian path is required by this algorithm, and
to find such a path, extra communication is required. This is
another problem and out of the scope of the analysis in this pa⁃
per, we omit this cost here.

2) Time⁃to⁃Completion
In distributed RLS algorithm, it is easy to see that the delay

in one step is n + n2 and there are totally N - 1 steps in the al⁃
gorithm, so the total time⁃to⁃completion is ( )n + n2 ( )N - 1 .
3.2 Decentralized Optimization Methods

In recent years, much attention has been paid to fully dis⁃
tributed (decentralized) consensus optimization problems, espe⁃
cially in applications like distributed machine learning, multi⁃
agent optimization, etc. Several algorithms have been proposed
for solving general convex and (sub)differentiable functions.
By setting the objective function as least⁃square, the decentral⁃
ized least⁃square problem can be seen as a special case of the
following model.

min
x ∈ℝn

F( )x : =∑
i = 1

p

Fi( )x , (11)
where p nodes are in the network and they need to collabora⁃
tively estimate the model parameters x . Each node i locally
holds the function Fi and can communicate only with its im⁃
mediate neighbors.

Considering the problem in (11), (sub)gradient⁃based meth⁃
ods have been proposed [16]-[20]. However, it has been ana⁃
lyzed that the aforementioned methods can only converge to a
neighborhood of an optimal solution in the case of fixed step
size [21]. Modified algorithms have been developed in [16] and
[17], which use diminishing step sizes in order to guarantee
converging to an true solution. Other related algorithms were
discussed in [22]- [28], which share similar ideas. The D⁃NC
algorithm proposed in [16] was demonstrated to have an outer⁃
loop convergence rate of O( )1 k2 in terms of objective value
error. The rate is same as the optimal centralized Nesterov’s
accelerated gradient method and decentralized algorithms usu⁃
ally have slower convergence rate than the centralized ver⁃
sions. However, the number of consensus iterations within outer
⁃loop is growing significantly along the iteration. Shi [29] devel⁃
oped a method based on correction on mixing matrix for Decen⁃
tralized Gradient Descent (DGD) method [21] without diminish⁃
ing step sizes.

The algorithms mentioned above are based on synchronous
models. Distributed optimization methods for asynchronous
models have been designed in [30]-[32]. However, it is worth
noting that their convergence rates are usually slower than the
counterparts in synchronous models. In the next, we show the
derivations of various decentralized optimization methods. In
order to have a compact form, let x ∈ℝnp × 1: = [ ]xT1 ,xT2 ,…,xTp T ,▲Figure 3. Communication pattern of D⁃RLS method.

v 2 v 3

v 5v 4

v 1

ψ 2(k ) P 2,k

One⁃hop connection Unicast

ψ 1(k ) P 2,k

ψ U(k ) ∈ ℝn PU, k ∈ ℝn × n

Distributed Least⁃Squares Iterative Methods in Large⁃Scale Networks: A Survey
SHI Lei, ZHAO Liang, SONG Wenzhan, Goutham Kamath, WU Yuan, and LIU Xuefeng

Review

ZTE COMMUNICATIONSZTE COMMUNICATIONS42 August 2017 Vol.15 No. 3

6



D:\EMAG\2017-06-57/VOL15\Review1.VFT——9PPS/P

where xi is a column vector containing local estimate of com⁃
mon interest x at node i . Similarly, define
F( )x =∑i = 1

p
Fi( )xi and ∇F( )x ∈ℝnp × 1: = [∇F1(x1)T ,

]…,∇Fp(xp)T T , where ∇Fi( )∙ denotes the gradient of Fi .
Without loss of generality, we assume n = 1 (the size of deci⁃

sion variable x ), and the aforementioned problem can be for⁃
mulated as:

min
x ∈ℝ p

F( )x :Wx = x . (12)
The constraint requires x to be consensual due to the prop⁃

erty of the mixing matrix W . Now we first derive the DGD al⁃
gorithm [21] from (5). Assuming W is symmetric and U is
symmetric, we get U2 = I -W . Then Wx = x if and only if
Ux = 0 holds. The original problem in (12) is thus equivalent to:

min
x ∈ℝ p

F( )x :Ux = 0 . (13)
If we use external penalty method, an unconstrained (but in⁃

accurate) reformation can be expressed as:
min
x ∈ℝ p

F( )x + ρ
2  Ux

2 . (14)
It is clear to see that (14) will approximate (15) as ρ→∞ .

Applying the gradient descent method to (14), we can obtain
the following update rule:

xk + 1 = xk - αk( )∇F( )xk + ρk( )I -W xk =
( )1 - αk ρk xk + αk ρkWxk - ∇F( )xk . (15)

If choosing αk ρk = 1 for all k , it yields the DGD algorithm:
xk + 1 =Wxk - αk∇F( )xk . (16)
If we choose constant step ⁃ size αk ≡ α , this is solving for

the fixed ρ = 1/α , and hence not yielding the optimal consen⁃
sus solution.

The DGD algorithm is shown in Algorithm 4.

Algorithm 4: DGD Method
Initialize x0

i ,∀i ∈{ }0,1,⋯,p .
1. for k = 0,1,… , node i do

2. xk + 1
i =∑

j = 1

p

Wij x
k
j - α∇Fi( )xk

i

3. Node i sends its updated value x
(k + 1)
i to its neighbors.

end for

The same situation happens in the algorithm D⁃NG (Algo⁃
rithm 5) [16].

xk + 1 =Wyk - αk∇F( )yk , (17)
yk + 1 = xk + 1 + k - 1

k + 2 ( )xk + 1 - xk . (18)

It is equivalent to applying (a special version of) Nesterov’s
gradient method [33] to the problem in (14) with increasing val⁃
ue of ρ (i.e. with diminishing αk ). Comparing (18) with (17),
we can find that D⁃NG differs from DGD only in using yk in⁃
stead of xk in (16). yk defined in (11) is actually an extrapola⁃
tion of the current xk and the previous iteration xk - 1 .
Algorithm 5: D⁃NG Method
Initialize x0

i ,∀i ∈{ }0,1,⋯,p .
1. for k = 0,1,… , node i do

2. xk + 1
i =∑

j = 1

p

Wij x
k
j - α∇Fi( )xk

i

3. Node i send its updated value xk + 1
i to its neighbors.

end for

We also show the derivation of Exact First⁃Order Algorithm
(EXTRA) (Algorithm 6) [29]. We claim that EXTRA is equiv⁃
alent to applying Alternating Direction Method of Multipliers
(ADMM)method [34] to the original problem in (13). In (13),
we would like to solve the exact constraint eventually. To this
end, an unconstrained reformulation using augmented Lagrang⁃
ian method can be described as:

max
z ∈ℝ p

min
x ∈ℝ p

F( )x - ρz,Ux + ρ
2  Ux

2 . (19)

Solving (19) by ADMM yields the following update equa⁃
tions:

zk + 1 = zk +Uxk , (20)

xk + 1 = arg min
x { }F( )x + ρ

2  Ux - zk 2 . (21)
When a linearized preconditioned (approxiate F( )x and lin⁃

earize ρ
2  Ux - zk 2 ) version of xk + 1 step is considered, (21)

becomes:
xk + 1 = arg min

x { }∇F( )xk ,x + ρU( )Uxk - zk ,x + 12αk

 x - xk

2

= ( )I -αk ρU
2 xk +αk ρUzk -αk∇F( )xk ,

(22)

where I denotes the identity matrix. Now for constant step ⁃
size αk ≡ α = 1/ρ , combining (20) and U2 = I -W yields the
EXTRA algorithm:

xk + 1 =Wxk - α∇F( )xk +∑
t = 0

k - 1
( )I -W xt . (23)

Note that (23) can also be seen as a“corrected”version of
the DGD algorithm [29] comparing to (16).
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Algorithm 6: EXTRA Method
Initialize x0

i ,∀i ∈{ }0,1,⋯,p . Set W͂ = ( )I +W /2 .
1. for k = 0,1,… , node i do

2. xk + 1
i =∑

j = 1

p

W͂ ij x
k
j - α∇Fi( )xk

i

3. x
(k + 2)
i =∑

j = 1

p

Wij x
(k + 1)
j - α∇Fi(x(k + 1)

i )
4. Node i send its updated value xk + 2

i to its neighbors.
end for

Finally, we discuss the Fast Decentralized Gradient Descent
(FDGD) method [35] that can be seen as an accelerated ver⁃
sion of EXTRA. FDGD does not require diminishing step size
and the method is accelerated to reach an optimal O( )1 k2

convergence rate for general convex differentiable functions
Fi . We adopte the idea of Nesterov’s optimal gradient method
for centralized smooth optimization [36] and mixing matrix
method in network gossip and consensus averaging algorithms
[29], [37]. In Algorithm 7, the superscript“ag”stands for
“aggregated”, and “md” stands for “middle”. Matrix
W͂ = ( )I +W /2 is a half ⁃mixing matrix based on W . At itera⁃
tion k , each node i sends its current xik to all its immediate
neighbors and receives x

j

k from them (one round of communi⁃
cation). The result x

i,ag is output as the final solution. Algo⁃
rithm 7 is a first ⁃ order method since only ∇F is required in
each iteration, and hence the subproblem has low computation
complexity. We do not need to use diminishing step sizes that
converge to 0 but still can ensure both of convergence and con⁃
sensus. Besides, if θk = 1 for all k , Algorithm 7 reduces to a
version very similar to regular decentralized gradient descent
(16). However, by the choice of θk =O( )1 k as below, the
change from input xmdk to output x

ag

k + 1 is faster than that from
xk to xk + 1 . This implies that Algorithm 7 can converge faster
than regular DGD. The last remark explains intuitively why the
multi ⁃ step scheme defined in Algorithm 7 can potentially ac⁃
celerate the convergence. The comparison of various decentral⁃
ized least⁃square methods is summarized in Table 3.
Algorithm 7: FDGD Method
Initialize xi0,yi

0 = 0,xi,ag0 ,∀i ∈{ }0,1,⋯,p . Set θk = 2
k + 2 ,

L: = max{ }Li ,∀i , where Li is the Lipschitz constant of node i .
1. for k = 0,1,… , node i do

2. yi
k + 1 = yi

k +∑
j = 1

p

( )W͂ij -Wij x
j

k

3. xi,mdk = ( )1 - θk x
i,ag
k + θk∑

j = 1

p

W͂ij x
j

k

4. xik + 1 =∑
j = 1

p

W͂ij x
j

k - yi
k + 1 - 1

Lθk

∇Fi( )xi,mdk

5. x
i,ag
k + 1 = ( )1 - θk x

i,ag
k + θkx

i
k + 1

6. end for
Output x

i,ag
k + 1

4 Conclusions
In this paper, we surveyed some of the developments in dis⁃

tributed iterative methods and parallel iterative methods which
can be potentially applied to solve least ⁃ squares problems in
the mesh network. We covered the traditional iterative meth⁃
ods for solving linear systems including the relaxation meth⁃
ods, the conjugate gradient methods and the row action meth⁃
ods. One algorithm from each category is selected for describ⁃
ing how to apply them to solve least⁃squares problem in mesh
network. We also surveyed some consensus and diffusion
based strategies for parameter estimation in signal processing
in the mesh network. Such the strategies only require local
communications, however, for a large scale network, may take
more iterations to converge to the required accuracy to reach
an agreement among all the nodes. Algorithm selection de⁃
pends on the context of the problem and the mesh network.

We also analyzed and compared the performance of the se⁃
lected representative algorithms in terms of communication
cost and time ⁃ to ⁃ completion. These two concerns are critical
for evaluating the performance of distributed algorithms in the
context of mesh networks. Besides, we think that a future re⁃
search direction of distributed computing in mesh networks is
the data loss tolerance: will the algorithm still approximate the
optimal estimation x* well if α ⁃ percent packets get lost in
the network? Different from traditional parallel machines
where data delivery is often guaranteed, in many distributed
network applications, preventing data losses can either be very
expensive (such as sensor networks) as it requires retransmis⁃
sions, or have a time constraint in real⁃time applications (such
as smart grid) that makes retransmitted data useless.

N is the network size, and k is the number of communication.

▼Table 3. Communication cost and convergence speed comparison

Algorithm
DGD
D⁃NG
EXTRA
FDGD

Communication cost
O( )kN

O( )kN

O( )kN

O( )kN

Convergence rate
Convergence to a neighborhood
O( )log k/k for objective function
Ergodic rate O( )1 k for residual
O( )1 k2 for objective function

DGD: Decentralized Gradient Descent
D⁃NG: Distributed Nesterov Gradient

EXTRA: Exact First⁃Order Algorithm
FDGD: Fast Decentralized Gradient Descent
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