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Abstract

A software defined networking (SDN) system has a logically centralized control plane that maintains a global network view and en⁃
ables network⁃wide management, optimization, and innovation. Network⁃wide management and optimization problems are typically
very complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve these
problems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionary
algorithms (EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of spe⁃
cies, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviews
four types of EAs that are widely applied in current SDNs: Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Ant Col⁃
ony Optimization (ACO), and Simulated Annealing (SA) by discussing their techniques, summarizing their representative applica⁃
tions, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech⁃
niques and categorizes the applications of these four EAs in SDNs.
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A
1 Introduction

s various Internet ⁃ connected devices and ad⁃
vanced network applications gain popularity, the
Internet traffic has become more and more com⁃
plex in its data volume, data type, Quality of Ser⁃

vice (QoS)/Quality of Experience (QoE) requirements, and se⁃
curity. This increased complexity creates a significant chal⁃
lenge in network management, which calls for flexible solu⁃
tions through programmability of network devices. Convention⁃
al IP networks tightly couple the control logic on dedicated net⁃
work devices, which are likely provided by diverse vendors, to
configure, control, and monitor data flows. This makes it rather
difficult for the network devices to cooperate and collect infor⁃
mation on network dynamics that are changing in real time, to
make decisions based on the network dynamics, and to enforce
these decisions by automatically configuring or reconfiguring
network devices. This motivates a new networking paradigm
called software defined networking (SDN), which decouples
network control from conventional network devices to form a
logically centralized control plane, while a physically distribut⁃
ed data plane consisting of the network devices as data forward⁃
ers efficiently forwards the packets of individual data flows

based on the rules generated by the control plane.
Software defined networks have a layered architecture con⁃

sisting of a data layer, a control layer, and an application layer
[1] (Fig. 1). The data layer forms a data plane that includes
multiple simple network forwarders (switches) providing pack⁃
et switching and forwarding, and also network statistics collec⁃

Figure 1.▶
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tion and reporting capabilities. The control layer is responsible
for providing logically centralized control functionality for man⁃
agement of network nodes and flow forwarding. The application
layer consists of end ⁃ user business applications that control
switching devices by invoking the services in the control layer.
The control layer and application layer form the SDN control
plane. The SDN architecture provides an open standardized
south⁃bound interface (e.g., OpenFlow protocol [2]) to manage
the communications between the data and control layers. How⁃
ever, the north⁃bound interface between the control and appli⁃
cation layers and the east ⁃ to ⁃west ⁃ bound interfaces between
the controllers inside the control layer are defined only func⁃
tionally but not standardized. With these interfaces, a software
defined network can maintain a logically centralized global net⁃
work view in its control layer, allow each network application
in the application layer to retrieve data from the global network
view, and enforce network⁃wide management or security poli⁃
cies to optimize network performance, security, and resource
usage. SDN makes a perfect architecture to enable network ⁃
wide optimization, artificial intelligence (AI), and machine
learning mechanisms to form an open, customizable, program⁃
mable, and manageable network.

Network⁃wide optimization, AI, and machine learning prob⁃
lems typically are complex with huge search spaces, large num⁃
bers of variables, and multiple objectives. Many algorithms
have been proposed to solve these problems in various user
scenarios, among which evolution algorithms (EAs) are attrac⁃
tive candidates. EAs are stochastic algorithms inspired by the
natural biological evolution and/or social behavior of species
[3]. EAs typically have three major processes [4]: the initializa⁃
tion process, evaluation process, and new population genera⁃
tion process (Fig. 2). The initialization process randomly gener⁃
ates initial individuals, each of which represents a problem so⁃
lution directly or indirectly as a string consisting of multiple el⁃
ements, each element being a variable of the problem. In the
evaluation process, each solution is evaluated for its fitness

against the objectives so that the solutions with higher fitness
value will be selected to feed into the new population genera⁃
tion process to generate a new population set for next iteration.
Various EAs employ different ways to generate initial popula⁃
tions, evaluate fitness, and generate new populations.

As algorithms for solving complex optimization problems,
EAs are general and can adapt to an unknown environment
and autonomously decide the parameters of a dynamical opti⁃
mization problem. By exploiting the diversity of solutions, an
EA finds out the best solutions in a set of population with high
fitness values and evolve to the next generation. Thus EAs can
provide easily implementable scalability for solving a wide
range of single⁃ and multi⁃objective optimization problems [5].
These features motivate the growing interest in applying EAs
in SDNs or many other complex systems.

This paper reviews four widely used types of EAs: Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO), Ant Col⁃
ony Optimization (ACO), and Simulated Annealing (SA). We
compare their formulation and characteristics and provide a
brief survey of their application in SDNs. The goal of this pa⁃
per is not to provide an exhaustive survey, but to highlight the
features of these EAs, provide a representative sample of the
important work, and point out the research issues and challeng⁃
es in applying EAs in SDNs. Though there have been some sur⁃
veys on EAs [5], [6] or on SDNs [7]- [9], to the best of our
knowledge, our work is the first to summarize the features of
these four EAs and review their application in SDNs.

The rest of this paper is organized as follows. Section 2 re⁃
views the related literature. Section 3 introduces the four types
of EAs. Section 4 summarizes the applications of these EAs in
SDN networks. Section 5 highlights the potential issues and
challenges. Conclusions are drawn in Section 6.

2 Review of Related Works

2.1 Surveys on EAs
EAs have been a hot research topic for many years and ap⁃

plied to solve complex problems in a large range of science
and engineering fields. Many surveys on EAs have been pub⁃
lished in the recent literature. Elbeltagi in [10] compares the
formulation and performance of five EAs: GAs, memetic algo⁃
rithms, PSO, ACO, and shuffled frog leaping. Crepinšek in [11]
reviews nearly 100 existing papers since 2013 and summarizes
how EAs do exploration and exploitation to achieve close⁃to⁃op⁃
timal solutions over a short convergence time. Von Lücken in
[12], Mukhopadhyay in [13], and Cheshmehgaz in [14] review
the application of EAs to solve multiple⁃objective optimization
problems. EAs in data mining are reviewed in [13] and [15],
distributed EAs are reviewed in [16], hybrid EAs are reviewed
in [17], and approaches to optimize the performance of EAs are
reviewed in [18]-[20]. Mehboob’s recent survey on the appli⁃
cations of GAs in wireless networks [5] is similar to this paper

◀Figure 2.
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in summarizing the techniques and applications of EAs and
pointing out the major issues and challenges in designing and
applying EAs, but it focuses on GAs in wireless networks while
this paper reviews the technologies and applications of PSO,
ACO, SA as well as GAs for SDN networks.
2.2 Surveys on SDNs

Nunes in [6], Kreutz in [7], and Robertazzi in [8] and many
more researchers have presented comprehensive surveys on
SDN architecture, protocols, implementations, tools, and appli⁃
cations. Some works are focused on particular issues of SDNs;
for instance, security issues have been reviewed by Yan [21],
Scott ⁃Hayward [22], and Farhady [23], network virtualization
on SDN architecture has been reviewed by Blenk [24] and Jain
[25], and flow table optimization has been reviewed by Jain
[26]. Other works are focused on combining SDN with other
networking technologies; for instance, the architecture, imple⁃
mentation, and applications of wireless SDNs have been sum⁃
marized in [27], approaches enabling mobile SDNs are summa⁃
rized in [28], application of SDN in wireless sensor networks is
considered in [29], and application of SDN to cloud networks
is studied in [30]. The most relevant work to our survey is [9],
which reviews the applications of AIs in SDN networks, while
our survey is focused on EAs, a subset of AI algorithms, and re⁃
views the algorithms, the applications, and the issues of EAs in
SDN networks.

3 Evolutionary Algorithms
EAs are the computational systems that mimic the efficient

behavior of species and seek fast and robust solutions for com⁃
plex optimization problems. They are the stochastic algorithms
and can be used to find out the approximate optimal solutions
for NP⁃hard optimization problems. GAs are the earliest EAs
introduced by Holland in [31] in 1975. Later on other types of
EAs are developed. As described in the introduction section,
EAs typically have the same three processes: the initialization
process, the evaluation process, and the new population genera⁃
tion process. In the rest of this section, we choose four major
EAs widely used in current SDNs: GAs, PSO, ACS, and SA,
and discuss how they can form their own initialization, evalua⁃
tion, and new population generation processes.
3.1 GAs

GAs are inspired by biological genetic evolution that selects
the individuals with best fitness values to generate offspring
through crossover and mutation operations. As shown in Fig.
3, its new population generation process is split into selection,
crossover, and mutation sub⁃processes. In the initialization pro⁃
cess, GAs have to randomly generate a population set, each
population represents a solution of the optimization problem.
GAs often use a string (chromosome) consisting of a number of
elements (genes) to represent a solution. The evaluation pro⁃

cess defines a fitness function against the objectives to evalu⁃
ate the fitness of a solution. The selection is used to form a par⁃
ent set to feed into crossover and mutation functions. With the
fitness value of solutions evaluated, the selection sub⁃process
ranks the solutions and the ones with the higher fitness values
form the parent set for offspring generation. The selection simu⁃
lates the survivor of the fittest: the chromosomes with higher fit⁃
ness are selected with higher probabilities to generate off⁃
spring. Crossover sub⁃process generates a child by mixing the
genes of two parents and the mutation sub⁃process generates a
child by randomly changing some of the genes in chromo⁃
somes. On one hand, crossover operation exploits the best
traits of the current chromosomes, and strong chromosomes
(with higher fitness) are more likely to be selected as parents,
and hence there is a big chance that the new chromosomes
may become similar after several generations, and the diversity
of the population may decline and lead to population stagna⁃
tion. On the other hand, mutation operation explores chromo⁃
somes to discover new traits. It injects diversity into the popu⁃
lation and avoids the population stagnation. Crossover along
with mutation provides the necessary“evolutionary mix of
small steps and occasional wild gambles”to facilitate robust
search in complex solution spaces [31]. Selected individuals
are genetically modified to form the next generation of the pop⁃
ulation, the usage of crossover and mutation and stochastic se⁃
lection allow a gradual improvement in the fitness of the solu⁃
tion and allow GAs to keep away from local optima.

Applying GAs to solve an optimization problem has to firstly
encode problem’s solutions into chromosomes. There are
many ways to encode a solution. Table 1 lists almost all the
popular encoding ways proposed in current research, and
among them, binary encoding is the earliest encoding method
and has been widely used in GAs, but it generates many chro⁃

Figure 3.▶
Flow chart of GAs.
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mosomes even for a problem with small search space and may
not suitable for some optimization problems. Permutation en⁃
coding is typically designed for optimizing ordering problems
such as traveling salesman problems or job scheduling prob⁃
lems. Tree encoding is particularly used for expressions or
evolving programming languages. Value encoding is useful in
dealing with optimization problems when the variables are in
real numbers or other complicated values, but the crossover
and mutation functions may have to be updated to make the re⁃
al numbers workable.

Fitness functions are corresponding to the objectives. They
are typically the objective functions of optimization problems.
A fitness function provides a mechanism to evaluate the solu⁃
tions of a problem. Since the fitness function is utilized by
each population to evaluate its fitness at each iteration, careful⁃
ly designing the fitness function can reduce the convergence
time of a GA and hence improve the performance of a GA.
3.1.1 Major Parameters of GAs

A GA has a number of parameters. It firstly needs to deter⁃
mine the population size and the maximum generations. The
population size is the number of populations a GA has to main⁃
tain in a generation, while the maximum number of iterations
is the maximum number of loops the algorithm can run. A GA
also has to choose a selection function, crossover function, and
mutation function.

A selection function often develops a particular way to se⁃
lect the members with higher fitness value to form a parent set
for later crossover and mutation. Different selection approach⁃
es may require different methods to generate and assign proba⁃
bility to make sure the diversity and the improvement of the
new populations. As listed in Table 1, the typical selection
mechanisms used in current GAs include: 1) relative tourna⁃

ment evaluation; 2) roulette wheel selection; 3) relative pooling
tournament evaluation; and 4) elitism. Relative tournament
evaluation randomly chooses two members from the current
population set, and the one with the higher fitness value is se⁃
lected as a parent for next generation. Roulette wheel selection
picks parents from individuals based on their fitness values,
the higher the fitness value an individual has, the larger proba⁃
bility an individual has to be chosen as a parent. Relative pool⁃
ing tournament evaluation throws members of the current popu⁃
lation set in a competition, and the winner of the competition
will be chosen as parents. Elitism maintains an archive that re⁃
cords all the populations that have been considered so far, and
the individuals with the better fitness values in the archive are
chosen as parents. Roulette wheel selection and relative pool⁃
ing tournament evaluation are widely used.

As listed in Table 1, the typical crossover methods consist
of: 1) one ⁃point crossover; 2) two ⁃point crossover; 3) uniform
crossover; 4) cut and splice; and 5) ordered chromosome cross⁃
over. One ⁃ point crossover randomly generates a crossover
point for two parents, swaps the genes before or after the cross⁃
over point to generate a new child chromosome. Two ⁃ point
crossover randomly generates two crossover points for two par⁃
ent, and the genes between these two points are swapped to
produce new child chromosomes. Uniform crossover uses a
fixed mixing ratio between two parents. Cut and splice cross⁃
over allows each parent to have its own choice in deciding
crossover point. Ordered chromosome crossover consists of
multiple crossover methods that change the chromosome by
switching the position of genes, and is often used when a direct
swap infeasible. Choosing crossover functions needs to make
sure the new populations satisfy the constraints of the prob⁃
lems.

The typical mutation methods used in GAs consists of 1) bit⁃
string mutation; 2) flip bit; 3) boundary; 4)
uniform; and 5) Gaussian, as shown in Table
1. Bit ⁃string mutation randomly flips the val⁃
ue of genes. Flip bit chooses genes from chro⁃
mosomes to flip their values. Boundary replac⁃
es value of a gene with the upper or lower
bound of the value. Uniform mutation replac⁃
es the score of the chosen chromosome with a
uniform random value selected in the range of
the user⁃specified bounds. Gaussian mutation
adds a unit Gaussian distributed random val⁃
ue to the selected chromosome. The same as
the crossover function, mutation function has
to make sure the new populations satisfy the
problem’s constraints.
3.1.2 Multi⁃Objective GAs

Multi ⁃ objective GAs (MOGAs) find out a
Pareto optimal solution set for multi⁃objective
optimization problems. An MOGA is also an

▼Table 1. The major mechanisms in initialization, selection, crossover, and mutation of GAs

Process

Initialization

Selection

Crossover

Mutation

Mechanisms
Binary encoding
Value encoding
Permutation encoding
Tree encoding
Relative tournament
Routlette wheel
Relative pooling
tournament
Elitism
One⁃point
Two⁃point
Uniform
Cut and spice
Ordered chromosome
Bit⁃string
Flip bit
Boundary
Gaussian
Uniform

Descriptions
A solution is a bit string with each element as 0 or 1
A solution is a string with elements integers, real numbers, characters, or objects
A solution is a sequence of number
A chromosome is a tree form of objects
Two members are randomly chosen, and the parent is the one with higher fitness
The probability an individual to be chosen as a parent is depended on their fitness
Populations are thrown into a competition, and the winners are the parents
Populations with the higher fitness from all the populations generated so far from the parent set
Randomly generate a crossover point
Randomly generate two crossover points
Use a fixed mixing ratio between two parents
Allow each parent to have its own choice in deciding crossover point
Switch the position of genes
Randomly flip the value of genes
Flip the value of selective genes
Replace the value of a gene with the upper or lower bound of the value
Add a unit Gaussian distributed random value to the selected chromosome
Replace the value of a selective gene with a uniform random value within the user⁃
specified bounds
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iteration procedure consisting of the same flow chart as a sin⁃
gle objective GA, but uses different mechanisms in section,
crossover, and mutation to find out the Pareto optimal solution
set and maintain the diversity of the set. The first MOGA is in⁃
troduced by Carlos M. Fonseca and Peter J. Fleming in [32]. It
uses a section sub ⁃process where each solution is assigned a
rank, the dominated solutions have the rank of 1 and the non⁃
dominated solutions have a higher rank based on the distance
between them and a dominated solution. N. Srinivas and
Kalyanmoy Debin in [33] propose a MOGA named the none ⁃
dominated sorting genetic algorithm (NSGA) based on several
layered classification of the solutions. Deb in [34], [35] extends
this NSGA to the NSGA ⁃ II that initializes a population set,
ranks and sorts each population according to none⁃domination
level, creates new pool of offspring by applying crossover and
mutation operations, and then combines the parents and off⁃
spring before partitioning the new combined pool into fronts.
The NSGA⁃II conducts niching by adding a crowding distance
to each member. It uses this crowding distance in its selection
sub⁃process to maintain the member diversity and make sure
each member stays a crowding distance apart. This keeps the
population diverse and helps the algorithm to explore the fi
tness landscape. NSGA⁃II has been the most widely used MO⁃
GA in current research.
3.2 PSO

PSO is proposed by James Kennedy and Russell Eberhart in
[36] in 1995 and since then applying PSO to solve different
complex optimization problems has been a hot research topic.
PSO is inspired by the migrating birds to reach unknown desti⁃
nation. When birds migrating, each bird looks in a specific di⁃
rection and finds out the migration route through identifying
the bird in the best position. When applying PSO to solve an
optimization problem, each solution of the problem is a“bird”
or referred to a“particle”. The population of solutions is a
swarm of particles. Each particle has a velocity corresponding
to its current place. Once a particle reaches a new position, the
best position of each particle (the local best position) and the
best position of the whole swarm of particles (the global best
position) are updated. The new velocity of a particle corre⁃
sponding on the new global best position and the local best po⁃
sition can be calculated.

The basic flow chart of a classical PSO algorithm is shown
in Fig. 4. It is similar as GAs to have an initialization process
where initial swarm of particles is randomly generated. Each
particle has its velocity and position. Then the evaluation pro⁃
cess is to evaluate the fitness of each particle. Each time a par⁃
ticle gets evaluated, its fitness value is compared to the fitness
of the global best position and the local best position. If the fit⁃
ness value is better than the fitness of current global or/and lo⁃
cal best positions, the current global or/and local best positions
are updated accordingly. The velocity and position of the
whole swarm are updated to generate a new swarm for the next

iteration until the stopping criterion is met.
The velocity of a particle is calculated using (1), where V c

and V l are the current and last velocity respectively, Pl is
the last position of a particle, Lbest and Gbest are the local best po⁃
sition of a particle and the global best position of the whole
swarm, w,c1,c2 are parameters, and R1 and R2 are random
variables ranging from 0 to 1. The formula calculating velocity
of a particle represents the process that involves social interac⁃
tion and intelligence so that each particle can learn from their
own experience (the local best position) and also from the expe⁃
rience of other particles (the global best position). In (1), w
represents the inertia of a particle, c1 and R1 represent how
much experience needs to be learned from the local best posi⁃
tions, and c2 and R2 represent the experience learn from the
global best positions. Then the new position of a particle is the
sum of the current velocity calculated by (1) and the last posi⁃
tion of the particle using (2).
V c =wV l + c1r1( )Lbest -Pl + c2r2( )Gbest -Pl , (1)
Pc =Pl + V c . (2)

3.2.1 Major Parameters of PSO
A PSO algorithm often has the following parameters: the

number of particles, the w , c1 and R1 , and c2 and R2 . A par⁃
ticle in PSO is analogous to a population in GAs. However,
PSO fixes the number of particles and adjusts the movement of
each particle toward the destination through social behavior,
while GAs randomly initialize the populations and then gener⁃
ate new populations for next evolution iteration. Since PSO
does not need to sort the fitness of particles in any process, and
the movement of each particle in a PSO is guided by the local
best position and the global best position, PSO algorithms of⁃

Figure 4.▶
Flow chart of PSO.
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ten have short convergence time.
3.2.2 Multi⁃Objective PSO

Classical PSO algorithms have no mechanisms to maintain
the diversity of particles, they are often used to find the global
optima for an optimization problem with single objective. How⁃
ever, great efforts have been made to extend classical PSO to
solve multi⁃objective optimization problems. The typical mech⁃
anism used by PSO to maintain the diversity of solutions is to
maintain two external archives: one for storing the leaders cur⁃
rently being used for performing the movement and the other
for storing the final solutions. A crowding factor is used for the
selection of non⁃dominance solutions from the solution archive
to form a Pareto frontier for a multi⁃objective optimization prob⁃
lem [37]. Many more variable multi ⁃objective PSO algorithms
have been proposed [3], [38].
3.3 Ant Colony Optimization

ACO is a set of combinational optimization algorithms in⁃
spired by ants search for food and depositing pheromone on
the route. When ants leave their nest to search for a food
source and meet an obstacle, they randomly choose to the right
or left directions to go forward. Then the ants in the direction
with a shorter distance find a food source and carry the food
back and deposit pheromone along their route. The following
ants most likely choose the path with the larger amount of pher⁃
omone to find a food source. Since the more pheromone a route
has, the more ants the route has been taken by, and the higher
probability this route has shorter distance between the nest
and a food source. Over time, this positive feedback process
prompts all ants to choose the shorter path. The amount of
pheromone on the ground influences the behavior of ants, the
path with the largest amount of pheromone represents the short⁃
est path between the nest and a source of food.
3.3.1 Ant System

The original ACO is the ant system (AS) proposed by Color⁃
ni, Dorigo, and Maniezzo in [39]-[41] and used to optimize the
traveling salesman problem [42]. To apply AS to solve such a
problem, one solution is represented as an ant, which is often a
string. Each element of the string is a variable with a value
within the given set. Fig. 5 shows the flow chart of the AS.

AS often starts with generating m random ants and evaluate
the fitness of each ant corresponding to an objective function,
and then updates the pheromone concentration of each possi⁃
ble trail (variable value) using the following formula:
τij ( )t = ρτij ( )t - 1 +Δτij , (3)

where i is the variable of an ant; j is the option that the value of
variable i choose; let lij be the value of variable i; T is the maxi⁃
mal number of iterations and t is a particular iteration; τij ( )t is
the revised concentration of pheromone associated with lij at it⁃
eration t, τij ( )t - 1 is the concentration of pheromone at the pr⁃

evious iteration t⁃1; Δτij is the change in pheromone concen⁃
tration; and ρ is the pheromone evaporation coefficient with
value ranging from 0 to 1 to avoid too strong influence of the
old pheromone so that premature solution stagnation is in⁃
curred. Δτij is the sum of the contributions of all ants associa⁃
ted with lij at iteration t, and can be calculated using (4):

Δτij =∑
k = 1

m

τij
k, (4)

Δτij
k =∑

k = 1

m ì
í
î

ï

ï

R
fitnessk

if option lij is chosen by ant k
0 otherwise

, (5)

where m is the number of ants and Δτij
k is the pheromone co⁃

ncentrate laid on value lij by ant k. Δτij
k can be calculated by

(5) with R being the pheromone reward factor and fitnessk b⁃
eing the value of the objective function for ant k.

Once the pheromone is updated, each ant has to update its
route respecting the pheromone concentration and also some
heuristic preference. The ant k at iteration t will change the val⁃
ue for each variable according to the following probability:

Pij( )k, t =(τij( )t
α ×ηij

β)/(∑
lij

m

τij
α ×ηij

β) , (6)
where Pij( )k, t is the probability that option lij is chosen by ant
k for variable i at iteration t; τij( )t is the pheromone concentra⁃
tion associated with option lij at iteration t; ηij is the heuristic
factor for preferring among available options and is an indica⁃
tor of how good it is for ant k to select option lij; and α and β
are exponent parameters that specify the impact of trail and at⁃
tractiveness, respectively, and take values greater than 0.
3.3.2 Ant Colony System

AS is the first ACO algorithm motivated by real ants and

Figure 5.▶
Flow chart of AS.
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used to solve traveling salesman problem [42], but its perfor⁃
mance cannot compete against the state⁃of ⁃art heuristic algo⁃
rithm. Later on, Gambardella and Dorego extend the AS algo⁃
rithm to be Ant ⁃Q algorithm [43] to improve its performance.
The Ant⁃Q algorithm is further simplified as Ant Colony Sys⁃
tem (ACS) [44], which becomes the base of many ACO algo⁃
rithms [45]-[47].

ACS has the same flow chart as AS. The major difference be⁃
tween them is that AS updates the pheromone of a trail using
all the pheromone contributed by all the ants, and ACS up⁃
dates the pheromone of a trail using the following formula,
τij ( )t = ρτij ( )t - 1 + ( )1 - ρ τ0， (7)

where ρ is still the pheromone evaporation coefficient with the
value ranging from 0 to 1 (usually set to 0.9), and τ0 is the ini⁃
tial pheromone value and can be defined as τ0 =(n × Lmn)-1 ,where Lmn is the tour length produced by execution of one ACS
iteration without the pheromone concentrate.

The pheromone updating of AS is a globally updating and in⁃
tends to increase the attractiveness of promising route, while
the updating of ACS simplifies the search in a neighborhood of
the best tour found so far of the algorithm, and it is local and
more effective and can avoid long convergence time.

Once the route updating for each ant is done, each ant choos⁃
es its next move by choosing a random probability ρ (which is
often fixed to 0.9). With the probability ( )1 - ρ the next move is
chosen randomly with a probability based on ηij

α (α often
equals to 1) and τij

β (β often equals to 2), and with the proba⁃
bility ρ0 the next move is chosen with a probability calculated
by (5).
3.3.3 Major Parameters of ACO

The main parameters of a ACO algorithm include the num⁃
ber of ants m, number of iterations t, the attractiveness of a
trail ηij , the exponents α and β, the pheromone evaporation
rate ρ , pheromone reward factor R, and the probability ρ0 .
3.3.4 Multi⁃Objective ACO

Angus and Woodward in [48] have reviewed a large collec⁃
tion of multi⁃objective ACO (MOACO) algorithms. The multi⁃
objective ACO algorithms can be classified by how they make
the choice of using single or multiple pheromones and phero⁃
mone update or decay, and by how these choices affect the per⁃
formance of the algorithm as well. Some approaches implicitly
or explicitly weight their multiple objectives in some kind of
preferential order, and this approach can outperform the alter⁃
native pareto⁃based MOACO for some particular problems, but
generating a Pareto optimal solution set so that a decision mak⁃
er can make his choice based its own strategy is more general.
The existing MOACO algorithms seeking the Pareto frontier
may use single pheromone matrix or benefit from multiple

pheromone matrix.
3.4 Simulated Annealing

Simulated annealing (SA) is a stochastic local search ap⁃
proach motivated by the behavior of physical systems in a heat
bath. Local search is an approach that attempts to improve on
a solution by a series of incremental and local changes. By giv⁃
en an initial solution, a local search algorithm defines a meth⁃
od that performs loops to find out the optimal solution in the
neighborhood of the given initial solution, and expects that the
local optima is the global optima. When a solid is put in a heat
bath, it firstly raises the temperature of the solid to a point
where its atoms can randomly move and then to lower the tem⁃
perature to force the atoms to rearrange themselves into a crys⁃
tallization state that minimizes energy of the system at a lower
energy state. Carefully selecting the cooling schedule allows a
solid to become a crystal that has the lowest energy instead of
an amorphous state with higher energy. Since the solution of an
optimization problem can be viewed as a solid in a heat bath,
the cost of the objective function can be viewed as the energy
of a solid, the optimal solution can be viewed as the ground en⁃
ergy state of a solid, moving a solution to a neighboring posi⁃
tion can be viewed as the rapid quenching, and the control
mechanism adopted by the search algorithm can be viewed as
the cooling schedule. In this way, a simulated annealing algo⁃
rithm can be developed to mimic the physical annealing pro⁃
cess of physical material.
3.4.1 Simulated Annealing Algorithm

The SA algorithm is first proposed by Kirkpatrick, Gelatt,
and Vecchi in [49]. The basic flow chart of the SA algorithm is
shown in Fig. 6, where S is a given initial solution, S′ is a ran⁃
domly chosen neighbor of S in the initialization process. In the
evaluation process, SA algorithms compare the difference of
cost(S') and cost(S) (the cost function is similar as the fitness
function in GAs, PSO, and ACO to evaluate how good a solu⁃
tion is in its solution space). In the new population generation
process, the SA checks the cost difference between S′ and S,
generates new S, S′ , and T based on the cost difference be⁃
tween current S, S′, and T.
3.4.2 Major Parameters of SA

The major parameters of a SA algorithm consist of the maxi⁃
mum number of iterations to apply the algorithm, the randomly
generated neighbor solution, the temperature T, and the cool⁃
ing ratio R ranging from 0 to 1.
3.4.3 Multi⁃Objective SA Algorithms

The key issue in extending SA to solve multi⁃objective opti⁃
mization problems is to determine how to calculate the proba⁃
bility of accepting a dominated solution [50]. The initial ap⁃
proach introduced by Serafini in [51] proposes a target⁃vector
approach. Given solutions S and S' randomly generated in the
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neighborhood of S, if S' is non⁃dominated, it is accepted as the
next S and the non⁃dominated solution set is updated. Serafini’
s approach allows to maintain an archive of non⁃dominated so⁃
lutions so that the generation of several members of the Pareto
optimal set in a single run can be calculated, but only the local
non⁃dominance is used to fill up the archive of solutions and a
further filtering procedure is required to reduce the number of
non⁃dominated solutions without sacrificing the diversity of the
Pareto optimal solutions. Given S and the temperature T,
P( )S',S,T (the probability of accepting S' as a non⁃dominated
solution) can be calculated as the following:

P( )S′,S,T =Minæ
è
ç

ö
ø
÷1，e

Maxj( )λj( )cos tj( )S - cos tj( )S′ /T , (8)
where the weights λj are initialized to one and modified during
the search process, and j is the particular iteration during the
search process. Based on this approach, many more simulated
annealing algorithms for multi⁃objective optimization problems
are developed [52]-[54]. Simon in [3] and Solís in [55] give a
comprehensive review on multi⁃objective SA algorithms.
3.5 Algorithm Summary

As a summary, the discussed 4 types of algorithms can be
categorized into EAs with the same general components in Fig.
2 and the need to encode solutions and ensure the generated
solutions satisfying the constraints. Each type of the algorithms
has its way to initialize a population set. GAs, PSO, and ACO

initialize their population set randomly, while AS has to choose
an initial solution and then randomly generate another solution
inside the neighborhood of the initial one. Each type of the al⁃
gorithms needs to define a fitness function (cost function in
SA) to evaluate the quality of the solutions. GAs evaluate the
quality of each individual in the population set, rank and sort
the populations according to their fitness number, choose the
ones with the higher fitness to be parents for generating off⁃
spring; PSO and ACO simply evaluate the quality of each parti⁃
cle and ant, respectively; and SA evaluate the cost difference
between the initial solution and its neighbor solution. To gener⁃
ate a new set of population, GA uses crossover and mutation
operations; PSO calculates the velocity and updates the posi⁃
tion of its particles; ACO updates the pheromone of each trail
and computes the trail of each ant will take; and SA calculates
the probability of accepting the neighbor solution as the new
initial solution and updates new temperature for next iteration.

In general, GA is the only type of EAs that ranks the solu⁃
tions, and hence the convergence time of GAs increases non⁃
linearly as the population size grows. PSO uses floating point
arithmetic to compute velocity and position of a particle. It can
generate any potential values of velocity and may lead to high
density of members in population set. Since the best positions
of a particle and the whole swarm of particles guide the move⁃
ment of a particle, PSO has short convergence time but may in⁃
cur premature convergence. ACO is efficient for traveling
salesman or similar problems. It can be used in dynamic appli⁃
cations or adapts to the changing environment. However, ACO
has uncertain convergence time and it is hard to get theoretical
analysis. SA can be used in many optimization problems. SA
outperforms all the existing approximation algorithms in graph
partitioning problem but suffers poor performance in number
partitioning problem. SA algorithms have long convergence
time and are not suitable for online optimization problems [56].
Table 2 shows the major features of each described EA.

4 Applications of EAs in SDN
EAs have been applied in SDN in a wide variety of contexts.

We have searched the major applications published since
2013, and categorized them into routing, load balancing, con⁃
troller placement, security, virtual network mapping, flow entry
optimization, and hybrid network migrating. We list the major
applications in Table 3 and discuss the representative applica⁃
tions in each category in the rest of this section.
4.1 Routing

The current routing strategy that forwards a packet along the
shortest path between its source and destination cannot always
achieve the shortest network delay in a highly dynamic net⁃
work, because this shortest path may suffer heavy work load or
get congested. With a logically centralized control plane that
frequently updates the dynamical global network states, SDNs▲Figure 6. Flow chart of SA algorithms.
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can develop many flexible routing strategies besides only using
the shortest path. Since calculating a routing path is based on
the huge volume of network statistics, finding out the optimal
routing path in an acceptable time in a dynamical network en⁃
vironment is highly demanded. Therefore, an exhaustive algo⁃
rithm is not time acceptable, and EAs are widely used in re⁃
cently years to produce approximately optimal solutions in a
short time. According to the objectives that a routing strategy
wants to optimize, routing algorithms can be categorized to: 1)
avoiding link congestion and balance link usage; 2) saving link
power; and 3) maintaining QoS or QoE.
4.1.1 Avoidance of Link Congestion and Balancing of Link

Usage
Liu in [57] presents a GA to solve the bandwidth ⁃ con⁃

strained multi ⁃ path optimization problem in a SDN. The pro⁃
posed GA is implemented in a Floodlight [58] controller that
manages a SDN network emulated by Mininet [59] for evalua⁃
tion. The results indicate that the proposed GA can globally,
flexibly, and effectively find out a routing path that minimizes
the network delay under bandwidth constraint in a multi⁃path
SDN network.

Ren in [60] develops a GA to solve a traffic scheduling prob⁃
lem in switch congestion control. It samples the link utilization
ratio, and feeds it into the GA to optimize the switch traffic as⁃
signment to avoid link congestion. It also implements the GA
in Floodlight controller over a Mininet emulated SDN with data
flows generated by Iperf [61] for evaluation. The results show
that the proposed GA is able to make the link arrangement uti⁃
lization more balanced and reasonable.

Maniu in [62] applies GAs to compute the routing path for
network flows so that the dynamic resource allocation can be
optimized to enable a self⁃adaptive network with history extrap⁃
olation. The chromosome of the GAs is a sequence of nodes
representing a routing path from source to destination. Each

gene has a value representing the node ID in the network, and
the length of the chromosome is the number of nodes in the
routing path. Since the length of route is variable, the remain⁃
ing locus in chromosome is completed with value 0. The Fit⁃
ness function is a sum of link costs in a route. The evaluation
shows the proposed GAs can provide an approximate optimal
routing path to save the link cost efficiently.

Kikuta in [63] proposes an effective parallel GA to optimize
explicit routing when using general purpose programming on
graphic processing unit (GPU) in a SDN. The parallelism of
GA consists of the search methods of GA itself, the calculation
of each fitness function, and the evaluation of the network con⁃
gestion ratio. It takes advantage of the multi⁃core processor for
acceleration of graphic processing, and presents 10 times fast⁃
er than the original parallel GA on GPU, and 9 times faster
than the conventional CPU computation when enforcing explic⁃
it routing in a SDN.

Stefano in [64] introduces A4SDN for traffic engineering in
software ⁃ defined networks. A4SDN is based on the alienated
ant algorithm, a stochastic ⁃ based heuristic approach used to
solve combinatorial and multi ⁃ constraint optimization prob⁃
lems. Based on artificial ant’behavior, the A4SDN forces the
ants to distribute themselves over all the available paths rather
than converge to a single one when searching for food. Using
this strategy enables an autonomic dynamic routing and leads
to a better exploitation of the network bandwidth for best effort
data packets. A comparison between A4SDN with two Dijkstra⁃
based shortest path routing solutions shows that A4SDN can
guarantee a higher throughput together with a lower packet
loss rate and network delay.

Wang in [65] adopts an ACO algorithm to route the network
traffic to avoid the network congestion in traffic scheduling.
The ACO algorithm is applied to dynamically adjust the calcu⁃
lation parameters of the routing algorithm. The proposed algo⁃
rithm is compared to the traditional equal cost multi⁃path rout⁃

ing algorithm, and the results show that the
ACO algorithm reduces link or node congestion
and effectively improves the link utilization rate.
4.1.2 Saving Link Power

The routing application can be optimized for
power efficiency by routing flows to minimize
the number of links activated. Most of the ener⁃
gy saving strategies on current IP network only
aggregate traffic into some links, which leads to
imbalance link utilization and seriously impacts
the QoS.

Zhu in [66] takes advantage of the centralized
control and global vision of a SDN to achieve
the network energy saving and load balancing
by dynamically aggregating and balancing the
traffic while ensuring QoS. It adds actual QoS
constraints to the basic maximum concurrent

▼Table 2. Major features of GAs, PSO, ACO, and SA

ACO: Ant Colony Optimization
GA: Genetic Algorithm

PSO: Particle Swarm Optimization
SA: Simulated Annealing

TSP: Traveling Salesman Protocol

Motivation
Population size

Iterations
Single⁃objective
Multi⁃objective
Parallelism
Convergence

Solution quality

Applications

Theoretical analysis

GA
Natural evolution
Any size
Yes
Yes
Yes
Inherent parallelism
Slow
Near global optima

General

Hard

PSO
Bird migration
Several
Yes
Yes
Yes
Extended
Fast
Near global optima

General

Hard

ACO
Ant search food
Any size
Yes
Yes
Yes
Inherent parallelism
Uncertain
Near global optima
TSP, routing,
dynamic and adaptive
Hard

SA
Solid in heat bath
Typically two
Yes
Yes
Yes
Extended
Slow
Near local optima

General

Hard
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flow problem to formulate a multi⁃objective mixed integer pro⁃
gramming model and proposes a multi⁃objective PSO algorithm
called MOPSO to solve this NP⁃hard problem.

Subbiah in [67] proposes a PSO based energy aware routing

algorithm at open virtual switches. It finds out
the best node connectors in the switches from
source host to destination host to reduce the path
energy consumption. It improves the networking
performance compared to the conventional one.

Awad in [68] considers a routing optimization
problem for energy saving with a set of practical
constraints consisting of the size⁃limited flow ta⁃
ble and discrete link rate. It develops a low⁃com⁃
plexity PSO based and power efficient routing
heuristic algorithm to solve this problem. Perfor⁃
mance evaluation results indicate that the pro⁃
posed algorithm achieves more than 90% of the
optimal network power consumption while requir⁃
ing only 0.0045% to 0.9% of the computation
time in real network topologies.
4.1.3 QoS and QoE

Dobrijevic in [69] applies an ACO approach to
flow routing in SDN environments. Based on the
global network view and the flexible configura⁃
tion provided by a SDN, the approach estimates
the QoE and seeks to optimize the user QoE for
multimedia services. As different service has its
QoE affected by network metrics such as packet
loss and network delay differently, it proposes an
ACO⁃based heuristic algorithm, based on the ser⁃
vice type and its typical integral media flows, to
calculate the best routing paths that aware QoE
and conform to network limitations and traffic de⁃
mands. The algorithm is integrated into an Open⁃
Daylight controller, and the evaluation results in⁃
dicate the proposed approach has promising QoE
improvements and lower running time over short⁃
est path routing.

Tang in [70] applies an improved ACO algo⁃
rithm to the calculation of routes, meeting QoS
requirements through obtaining the network to⁃
pology, resources usage, and network statistics
from the controller. If the bandwidth of a single
path cannot meet the bandwidth requirement of
an application, it can aggregate multiple paths
and distribute the work load to these multiple
paths to maintain the QoS of the application.

Blaguer in [71] applies a GA to find a routing
path for a stream from a source to a target node
in a SDN to maximize the concurrent streams
without degrading the QoE. Since multimedia
streams have to satisfy a certain maximum laten⁃

cy requirements and a minimal bandwidth requirement, find⁃
ing the optimal routing path that satisfies the constraints costs
time, especially in a large scale network. The GA offers an ac⁃
ceptable approximate optimal solution with short convergence

▼Table 3. Applications of EAs in SDNs

ACO: Ant Colony Optimization
DDoS: distributed denial of service

EA: evolutionary algorithm
GA: Genetic Algorithm

GPU: graphic processing unit
PSO: Particle Swarm Optimization

QoE: Quality of Experience
SA: Simulated Annealing

Application
Liu in [57]
Ren in [60]
Maniu in [62]
Kikuta in [63]
Stefano in [64]
Wang in [65]
Zhu in [67]
Subbiah in [68]
Awad in [69]
Dobrijevic in [70]
Tang in [71]
Blaguer in [72]
Santl M in[73]
Kang in [74]
Chou in [75]
AMR in [77]
Sathyanarayana in [76]
Lin in [72]
Lange in [79]
Sanner in [80]
Jalili in [81]
Ahmadi in [82]
Gao in [83]
Liu in [84]
Li in [86]
Li in [87]
Chen in [88]
Liu in [89]
Ojugo in [90]
Zhao in [91]
Bouet in [92]
Famaluddine in [93]
Li in [94]

Category

Routing

Load balancing

Controller
placement

Security

Virtual network
mapping

EA
GA
GA
GA
Parallel GA
ACO
ACO
PSO
PSO
PSO
ACO
ACO
GA
ACO
GA
GA
GA
ACO
ACO
SA
GA
GA
GA
PSO
PSO
GA
GA,PSO
ACO
ACO
GA
GA
GA
GA
PSO

Description
Avoid link congestion
Avoid switch congestion
Optimize link usage
Optimize explicit routing in GPU
Optimize network bandwidth usage
Avoid link congestion
Energy saving
Finding the best node connector in switches for energy saving
Energy saving under the constraint of size⁃limited flow table
QoE aware routing
QoE aware routing
QoE aware routing
QoE aware routing
Controller load balancing
Controller load balancing
ink load balancing
Controller and link load balancing
Controller load balancing
Minimize swi⁃to⁃con delay and controller load imbalance
Minimize swit⁃to⁃con delay
Minimize con⁃to⁃con delay and controller load imbalance
Minimize swi⁃to⁃con delay, con⁃to⁃con delay, controller load
imbalance
Minimize swi⁃to⁃con delay considering controller capacity
Minimize swi⁃to⁃con delay and controller load imbalance
Detect DDos attacks
Detect DDos attacks
Detect DDos attacks
Detect DDos attacks
Security rule generation
Intrusion action detecting
Single security appliance placement
Multiple security appliances placement
Optimize network resource usage

Yao in [95]
Gao in [96]
Li in [97]
Guo in [98]

Flow table
optimization

Hybrid SDN
migration

PSO
ACO
ACO
GA

Optimize flow table usage
Optimize flow table usage
Optimize flow table usage
Migrate routers in hybrid network
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time for a large scale of network.
Santl M in [72] applies ACO for QoE⁃centric flow routing in

SDNs. It views a SDN as a weighted graph with a QoE measure
as the ultimate metric. QoE depends on QoS and is expressed
in terms of delay, jitter, and packet loss rate. Achieving good
QoE often has to satisfy combination of multiple QoS metrics.
It associates weights to the graph nodes based on values of de⁃
lay and packet loss rate for each network device. The delay
sums up delay of each node on a path, and a packet loss rate is
calculated by 1 -∏ ∈ pa th( )1 - lossRate( )node . When apply⁃
ing ACO, it specifies an ant type for a flow type, and multiple
ants of the same type are sent from the flow source to the desti⁃
nation in iterations, tracking estimated QoE and seeking to
maximize the final result. The evaluation is conducted in a
SDN emulated by Mininet with Floodlight controller, the pro⁃
posed ACO indicates promising QoE improvements over short⁃
est path routing as well as low convergence time.
4.2 Load Balancing

In SDN, load balancing can be categorized into two types:
controller load balancing and link load balancing. Controller
load balancing is a dynamical optimization problem and bal⁃
ances the load of controllers based on the real time changed
network state. Link load balancing is often achieved by using
ACO algorithms.

Kang in [73] and Chou in [74] propose similar load balanc⁃
ing strategies that use a way to monitor the load of each control⁃
ler, once controller load imbalance is detected, a GA is ap⁃
plied to generate new switching assignment to balance the con⁃
troller load.

AMR in [75] also applies a GA to balance the load of each
controller corresponding to a set of workload. The performance
of the proposed GA outperforms the random and round robin
methods.

Sathyanarayana in [76] applies an ACO algorithm to select
the best path to reach a controller with the least load to bal⁃
ance the load of both controllers and the paths leading to the
controllers. The proposed approach is implemented as a load
balancing module in the SDN controller. This module uses re⁃
source usage of the controller and the network statistics collect⁃
ed by the controller to find both the best server and the best
path for network flows.

Lin in [77] proposes a dynamic load balancing approach
based on an ACO algorithm with combined job classification in
a layered control plane consisting of a root controller and multi⁃
ple lower layer controllers. The root controller monitors the
state of the whole network, and each lower layer controller
manages a subset of network. Every job in the network is firstly
sent to the root controller to decide which subset of network
and which lower layer controller should take the job based on
the job demand for CPU performance, then the job is sent to
the corresponding lower layer controller to run the ACO algo⁃
rithm to calculate the best routing path that minimizes the link

load based on the dynamic network load provide by the root
controller.
4.3 Controller Placement

Each new flow in a SDN suffers a flow setup delay since
each switch in the data plane has to involve the control plane
to setup new flows for them. This flow setup delay affects how
fast a SDN can forward a new flow and how many new flows the
control plane can set per second, and hence limits the network
performance and scalability. Therefore, a large scale network
or a geographically wide area network may need a logically
centralized but physically distributed control plane with multi⁃
ple controllers to provide a short flow setup delay anticipated
by the network. This creates a controller placement problem
that is firstly introduced by Heller in [78] to optimize the loca⁃
tion of controllers so that the switch⁃to⁃controller delay can be
minimized in a wide area of SDN. Later on the controller place⁃
ment problem is extended to a multi ⁃ objective optimization
problem to minimize the controller⁃to⁃controller delay, control⁃
ler load imbalance, and many other objectives for both wide ar⁃
ea of SDNs or data center SDNs.

An exhaustive algorithm can be used to find the global opti⁃
mal solution in a small scale network with very limited number
of controllers, but may not be time acceptable in a large scale
network or as the number of controllers in the network increas⁃
es. Heuristic algorithms have been proposed to solve a particu⁃
lar problem in a particular scenario, but EAs are more general
and can solve general optimization problems with approximate⁃
ly optimal solutions in an acceptable computation time.

Lange in [79] proposes a SA algorithm to provide Pareto opti⁃
mal controller placements to minimize switch⁃to⁃controller de⁃
lay and controller load imbalance under a given maximal con⁃
troller⁃ to⁃controller delay. This application is the most repre⁃
sentative sample that applies SA in SDN networks.

Sanner in [80] uses a GA to find out the controller place⁃
ment so that the switch⁃to⁃controller latency can be minimized.
It encodes a controller placement as a chromosome, but the en⁃
coding method is not clearly provided. It only optimizes one ob⁃
jective, and the performance of proposed GA is good compar⁃
ing to Integer Linear Programmer.

Jalili in [81] applies a multi⁃object GA to find out the Pareto
optimized controller placement so that the controller⁃to⁃control⁃
ler delay and controller load imbalance can be optimized. In
particular, it applies NSGA ⁃ II with each chromosome repre⁃
senting a controller placement and each gene of the chromo⁃
some representing the ID of node in the network. The evalua⁃
tion is done on finding appropriate placements with 6 control⁃
lers for the Internet2 OS3E network topology.

Ahmadi in [82] develops a hybrid NSGA⁃II to solve the con⁃
troller placement problem that minimizes the switch⁃to⁃control⁃
ler delay, the controller⁃to⁃controller delay, and the controller
load imbalance. Comparing to a typical NSGA⁃II, this hybrid
NSGA⁃II improves the population initialization process by add⁃
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ing an improved local search to generate better solutions in its
population set. This hybrid NSGA ⁃ II also develops a hybrid
crossover function that enforces path⁃relink strategy and cross⁃
controllers⁃operator.

Gao in [83] proposes a PSO to find out the optimal controller
placement that minimizes the switch ⁃ to ⁃ controller delay with
consideration of the controller capacity. It uses multiple parti⁃
cles, and each particle represents a controller placement con⁃
sisting of k variables; each variable identifies the position of a
controller in the network. The velocity and position of a parti⁃
cle are randomly generated and keep improved using the local
best position of the particle and the global best position of the
whole swarm of particles. The performance of the proposed
PSO is compared to a greedy algorithm and an integer linear
programming algorithm, and the results show the proposed
PSO performs rapidly and effectively.

Liu in [84] implements a network clustering PSO algorithm
to find the best controller placement to minimize the multi⁃ob⁃
jective optimization problem in SDNs. The proposed PSO takes
consideration of the controller capacity, switch⁃to⁃controller de⁃
lay, and the controller load balancing, and formulates an opti⁃
mization problem that finds out the controller placement to
maximize the utilization ratio of each controller and to mini⁃
mize the switch ⁃ to ⁃ controller delay under the constraint of a
maximal controller load imbalance. Each particle is encoded
as a string consisting of n elements representing n switches in
a network. The value of an element of the string indicates the
position of a controller in the network. The proposed PSO com⁃
bines a clustering mechanism to calculate the velocity and po⁃
sition of a particle. The evaluation is based on real topology
and work load and shows the algorithm's effectiveness.
4.4 Security

Internet service providers and equipment vendors are sub⁃
ject to many security threats. One of the most prevalent securi⁃
ty threats is the distributed denial of service (DDoS) attack,
where the attack traffic and attacker’s IP address are respec⁃
tively difficult to detect and trace, because attack traffic is sim⁃
ilar to regular traffic and the attack is executed by multiple at⁃
tackers. An intrusion detection system is a type of security soft⁃
ware designed to automatically alert administrators when some⁃
one or something is to compromise information system through
malicious activities or through security policy violations. Ap⁃
plying EAs in the security of SDN networks can be categorized
into 1) detecting attack and 2) optimizing security appliance
placement.
4.4.1 Detecting Distributed Denial⁃of⁃Service Attacks

EAs can be used in an intrusion detection system to detect
the attack traffic. Based on the past behavior, a profile of nor⁃
mal behavior consisting of multiple attributes such as service
types, flags, and logs can be created [85]. EAs can detect the
unseen patterns and find out the malicious traffic based on this

profile, but detecting a new attack is difficult.
Li in [86] proposes a cross validation ⁃GA to enable a sup⁃

port vector machine classification with optimized punish pa⁃
rameter c and the kernel function parameter λ in DDoS attack
detection. The proposed algorithm performs better than a typi⁃
cal support vector machine, a clustering model, and a BP neu⁃
ral network model.

Li in [87] combines BP, PSO, and GA to develop a particle
swarm BP neural network algorithm for DDoS attack detection.
The evaluation shows the proposed algorithm can achieve high
detection rate with low miss report rate and convergence time.

Chen in [88] proposes a novel distributed DDoS attack de⁃
tection and identification framework using an ACO based meta⁃
heuristic approach for low ⁃ rate DDoS attacks. The proposed
framework consists of three stages: a multi⁃agent algorithm, an
information heuristic rule, and a search method. The proposed
framework’s time and space complexity is compared to the
PSO and probabilistic packet marking. The evaluation shows
the proposed framework can solve the problems in using other
algorithms and demonstrates better performance than existing
methods.

Liu in [89] proposes a random routing mutation based on an
improved ACO algorithm to change the data transmission rout⁃
ing dynamically to avoid DDoS attack and improve network se⁃
curity. The ACO algorithm is used to find out the optimal rout⁃
ing path that has a minimal number of overlapping nodes com⁃
pared to the recently used routing paths and meet the load bal⁃
ancing needs of the entire network.

Ojugo in [90] applies a GA to classify network audit data so
that a better signatures for rule based intrusion detect system
can be created. A chromosome is a rule consisting of 7⁃ feats,
each of which is a fixed length vector including one or more
genes of different types. The goodness of chromosomes is evalu⁃
ated. If the chromosome correctly classifies an attack, it is con⁃
sidered good; otherwise it is bad and not selected for crossover
to produce offspring. Therefore, the more attacks a chromo⁃
some detects, the higher fitness value. Applying GA to gener⁃
ate the security classification rule reduces security experts
from rule creation. The rule generation can speed up and coun⁃
ter new attacks.

Zhao in [91] applies a clustering GA to solve the intrusion
detection problem. The proposed clustering GA algorithm con⁃
sists of a clustering step and a genetic optimization step. It
does not only automatically cluster cases, but also can detect
unknown intrusion actions. Its overall accuracy can reach up
to 95% with a very low false alarm rate.
4.4.2 Security Appliance Placement

Current IP networks need large ⁃ scale adoption of security
appliances to improve the whole network security and to pro⁃
tect the information privacy. Security appliances can be virtual⁃
ized and dynamically deployed as pieces of software on com⁃
modity hardware. Deploying such software security appliances
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is costly in terms of license fees and power consumption. De⁃
signing cost effective security appliance deployment strategies
that meet the security operational constraints is thus mandato⁃
ry for the adoption of this approach.

Bouet in [92] introduces a security appliance deployment
problem that minimizes the number of security appliance and
the network load under the management constraints such as
the maximal number of security appliance engines, the maxi⁃
mal usable link bandwidth, and the maximal unallocated flows.
This optimization problem is a multi ⁃ objective optimization
with conflicted objectives. Reducing the number of security ap⁃
pliances tends to potentially increase the distance of the paths
between the source of a flow and a security appliance, and the
usage of link bandwidth along the paths as well. Minimizing
the link bandwidth usage increases the number of security ap⁃
pliances to be deployed. Bouet only deploys one security appli⁃
ance and develops a GA to solve this problem, while Famalu⁃
ddine in [93] extends this problem to multiple security appli⁃
ances and solve the same security appliance deployment prob⁃
lem that minimizes the network load and the number of appli⁃
ances using GAs.
4.5 Virtual Network Mapping

Multi ⁃ tenant cloud network needs to map a tenant virtual
network onto the physical network substrate to provide re⁃
source and information isolation among tenants. To maximize
the resource usage without degrading the service level of a ten⁃
ant virtual network, a virtual network mapping problem can be
formulated to maximize the network resource usage under the
constraints of tenant virtual network service requirements, net⁃
work resource limitation, management limitation, and more. Li
in [94] proposes a virtual network mapping model based on a
PSO algorithm. It proposes a virtual network framework, where
each tenant virtual network is controlled by tenant’s own con⁃
troller. The proposed PSO algorithm has better performance
than a shortest path algorithm in improving the utilization of
network bandwidth.
4.6 Flow Table Optimization

SDNs need to involve their control plane to generate forward⁃
ing rules at switches according to the management policy. Net⁃
work⁃wide optimization policy often has to be enforced by in⁃
jecting many local forwarding rules at corresponding switches.
However, the tenary content addressable memory (TCAM)
used to store the forwarding rules in SDN switches is limited
resources. This creates a problem of optimizing the flow table
usage without affecting the network⁃wide management.

Yao in [95] investigates this problem and formulates it as a
bounded forwarding⁃rules maximum flow (BFR⁃MF) problem,
and solves it by applying an improved PSO algorithm. This im⁃
proved PSO keeps updating the position of particles to maxi⁃
mize the overall feasible traffic. The fairness among flows is
maintained to guarantee the QoS requirements of flows. Exten⁃

sive simulations show that the improved PSO algorithm per⁃
forms well in optimizing network utilization.

Gao in [96] formulates this problem as an mixed integer lin⁃
ear programing problem that optimizes the TCAM resources un⁃
der the QoS constraint of flows in a multiple uni ⁃cast session
SDN. This problem is actually a routing rule space occupation
problem that finds out the best switches to store routing rule
without sacrificing the QoS of flows. An ACO algorithm is ap⁃
plied to solve this problem and demonstrates an expected per⁃
formance in evaluation.

Li in [97] formulates this problem as a BFR⁃MF problem as
similar as Yao in [95], but applies an improved ACO algorithm
to optimize the flow table usage with the performance and the
level of QoS of flows guaranteed. The simulation indicates that
the proposed ACO performs better network utilization under
the constraints of QoS in data center networks.
4.7 Hybrid SDN Migration

Though some companies have moved their inter⁃connecting
data centers to fully SDN⁃enabled networks, many more compa⁃
nies have to look for an incremental deployment of SDN devic⁃
es in its network due to the existing economical, technical, and
organizational challenges. This implies that over a long period
of time, a hybrid network consisting of the conventional IP net⁃
work devices and Openflow enabled network devices is exist⁃
ed. Since the same network protocols can run over a conven⁃
tional network and a SDN, there is no big technical problem in
forming and running such a hybrid network. However, it cre⁃
ates an optimization problem that migrates legacy routers to
SDN⁃enabled routers to maximize the network usage with mini⁃
mized investment.

Guo in [98] investigates this problem and formulates it as an
optimization problem that finds out the optimal migration se⁃
quence of routers under the consideration of the traffic engi⁃
neering performance and the investment. It tries to utilize the
potential of network resources in traffic engineering to reduce
routers that need to be migrated, and to avoid investing more
budgets to migrate more routers that may make little gain for
traffic engineering. It applies GA to calculate the migration se⁃
quence that minimizes the link usage. The GA uses the permu⁃
tation of routers as its chromosome, and the fitness function is
the sum of the link usage. Once a router is migrated it remains
unchanged in the following migration iterations for network sta⁃
bility. The GA approach obtains a better performance com⁃
pared to a static algorithm or a greedy algorithm in migration.

5 Issues and Challenges

5.1 Requirements of Applying EAs
EAs can theoretically solve any optimization problems with

two requirements to be met: 1) encoding candidate solutions
and 2) generating fitness function to evaluate solutions. EAs re⁃
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quire the solutions of problems to be represented as some kind
of expression, for example, the chromosome of a GA, the parti⁃
cle of a PSO, the ant of an ant colony optimization, or the solid
of a simulated annealing. These encodings are often represent⁃
ed as a string, each element of which represents a variable
with bounded value set for the given problem. The number of
the elements in the string represents the number of variables
in the given problem and the bound value set of each variable
represents the constraints for each variable. Applying EAs also
needs a way to evaluate solutions—the fitness function. There
is no way to evaluate the rightness of a fitness function. Howev⁃
er, the fitness score is necessary for indicating how good a can⁃
didate solution is. As long as the encoding scheme and fitness
function are developed, there is really no restriction on the
types of problems that EAs can solve.
5.2 Tasks That Fit EAs

EAs can be used to solve combinatorial optimization prob⁃
lems and have been used to solve them in a big range of fields,
for instance, traveling salesman problems, job shop scheduling
problems, vehicle routing problems, multi⁃commodity distribu⁃
tion network design problems, multi ⁃ mode resource con⁃
strained project scheduling problems, warehouse design prob⁃
lems, and many other more. GAs and SA algorithms are very
general, and can be used in a distributed or paralleled manner
to solve complex optimization problems with large search
space and multiple conflicted objectives. PSO is mainly used
to solve unconstrained, single⁃objective optimization problems
though many mechanisms have been developed to allow a PSO
algorithm to support constrained problems or maintain the di⁃
versity of solutions for multi ⁃ objective optimization problems.
Unlike GAs and SA algorithms can optimize problems with
variables representing nodes and links of a graph, ACO is typi⁃
cally used for problems that optimize links of a graph, such as
travelling salesman problem and network routing problems,
and solve them in a dynamical manner. ACO algorithms often
run continuously and can adapt to the real time changed envi⁃
ronments. The improved ACO can also tackle a problem with
unknown features, which makes ACO can be used in data min⁃
ing, data analysis, and classifying malicious flows and detect⁃
ing attacks in security problems.
5.3 Implementation Issues

The discussed four EAs have the same three major process⁃
es in general as shown in Fig. 2. Therefore, when applying
these EAs to solve optimization problems, the first important
task is to determine how to represent the solution of the prob⁃
lem. Since GA provides a large flexibility to encode its chromo⁃
some, it is important to choose the encoding with less number
of genes to reduce search space and easy to enforce con⁃
straints. The second task in the implementation of EAs is to
maintain the diversity of the populations so that the solution
space can be explored globally and near globally optimized so⁃

lutions can be found. Lack of diversity in the populations often
incurs a permature converged solution and results in a local op⁃
timal solution rather than a global optimal one. The re⁃initial⁃
ization strategy that adds new randomly generated populations
to the current population set can avoid this premature conver⁃
gence process that results in a local optimal solution and is
highly recommended in PSO as well as GAs. The third task in
implementing EAs is to improve the solution accuracy. Since
EAs are approximately algorithms, we expect the solutions gen⁃
erated by them as close optimal as possible. Typically, increas⁃
ing the size of population set of an EA can allow it to search
wider solution space, but it is only suitable for GAs with a flexi⁃
ble population size that can be adjusted according to the solu⁃
tion space of a problem. However, since the density of the pop⁃
ulations in the solution space is very little, it is often found that
EAs cannot produce high quality solutions with high accuracy
to the real global optima. Hybrid EAs can be a fix.
5.4 Open Issues and Future Work

EAs are very difficult to do theoretical analysis. Though
EAs can be applied in many optimization problems, and have
been shown that their solutions perform better than some other
heuristic algorithms in particular circumstance, we cannot ex⁃
pect the same EAs can perform better than the heuristic algo⁃
rithms on some problems outside the circumstance. One set of
populations may bring solutions better than another set of pop⁃
ulations, but we do not know why and how. An enhanced theo⁃
retical understanding of EAs are needed to increase user’s
trust in further widely applying EAs in various fields.

Most of EAs are used to tackle a problem with a solution
string with up to tens of genes, and we have never seen an EA
used to solve an optimization problem with very long solution
string in practice. However, as SDN technology used in wire⁃
less sensor network, Internet of thing, and 5G mobile networks,
the scale of a SDN based network becomes larger and larger.
The number of network devices in such networks can increase
to thousands or millions level. Calculating the routing path or
optimizing the placement of some NFVs over the whole net⁃
work or a subset of network may have to generate a solution
string with hundreds of genes or even more. Solving such EAs
with long solution strings and huge solution space creates
many practical problems in algorithm designing, distributing
and parallelism, and performance tuning.

Since different EAs have their own advantages and disadvan⁃
tages, a single EA can hardly obtain a good enough solution.
PSO is easy to be implemented and has a short convergence
time, but suffers from partial optimism incurred by the lack of
regulation in particle speed and direction. ACO is efficient for
some particular types of optimization problems such as routing
and link usage optimization, but suffers from uncertain conver⁃
gence time and is really hard to get theoretical analysis. GA is
inherent parallelism and good at maintaining diversity, but suf⁃
fers from low accuracy and uncertain convergence time. Many
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efforts have been put on combining two or three of EAs togeth⁃
er to 1) reduce the convergence time, 2) improve the quality of
solutions , and 3) incorporate EAs as part of a larger system.

6 Conclusions
EAs are stochastic algorithms inspired by the natural biolog⁃

ical evolution and social behavior of species. They typically
have the same flow charts consisting of three major compo⁃
nents: population initialization, fitness evaluation, and new
population generation; but adopt various mechanisms in each
component. Although each discussed EA has its own advan⁃
tage and disadvantage, EAs are general and versatile, and can
be used for complex combinatorial problems in a wide variety
of circumstances.

With the logically centralized global network vision, SDN’s
control plane makes a perfect place to develop and deploy net⁃
work⁃wide management and optimization solutions, such as op⁃
timizing a routing path to avoid network convergence and bal⁃
ance link load, to maintain QoS and QoE, or to reduce link en⁃
ergy consumption; optimising the controller placement for dis⁃
tributed controllers; detecting the DDoS attacks or optimizing
the security appliance placement; and optimizing flow tables
usage, virtual network mapping, and router migration in a hy⁃
brid SDN. Such network ⁃ wide management and optimization
problems are often complex. EAs can be applied to find out the
near optimal solutions for them in an acceptable time.

There are basically two requirements that determine the fea⁃
sibility of applying an EA to solve an optimization problem: 1)
encoding a solution and 2) evaluating the quality of a solution.
Any problems that meet these requirements can be solved by
EAs. Many practical issues and open issues have been raised
when applying EAs to slove such problems, especially regard⁃
ing their applications in SDNs: theoretical analysis, dealing
with the optimization problem for huge scale of SDN networks,
and developing hybrid EAs to further improve the solution
quality and convergence time.
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