
D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

Scheduling Heuristics for Live Video TranscodingScheduling Heuristics for Live Video Transcoding
on Cloud Edgeson Cloud Edges
Panagiotis Oikonomou1, Maria G. Koziri1, Nikos Tziritas2, Thanasis Loukopoulos1, and XU ChengZhong2

(1. University of Thessaly, Lamia 35100, Greece;
2. Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

Efficient video delivery involves the transcoding of the original sequence into various resolutions, bitrates and standards, in order
to match viewers’capabilities. Since video coding and transcoding are computationally demanding, performing a portion of these
tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media provid⁃
ers. Motivated by the increasing popularity of live casting on social media platforms, in this paper we focus on the case of live vid⁃
eo transcoding. Specifically, we investigate scheduling heuristics that decide on which jobs should be assigned to an edge mini⁃
datacenter and which to a backend datacenter. Through simulation experiments with different QoS requirements we conclude on
the best alternative.

video transcoding; edge computing; scheduling; heuristics; x264
Keywords

DOI: 10.3969/j. issn. 16735188. 2017. 02. 005
http://kns.cnki.net/kcms/detail/34.1294.TN.20170411.0956.002.html, published online April 11, 2017

Special Topic

1 Introduction
odern applications built on top of an integrated
Internet of Things (IoT) environment [1], to⁃
gether with Cyber Physical Systems (CPSs) [2],
involve heavy video traffic, e.g., in smart vehi⁃

cle traffic management. At the same time, the proliferation of
smart mobile devices carrying cameras of continuously higher
resolution, together with the explosive growth in the popularity
of social media platforms, poses great challenges in cloud re⁃
source management. As an indication, Cisco reported in [3]
that during 2015, mobile Internet traffic experienced a growth
of 74%, the majority of which (>50%) was video transmissions.
Therefore, minimizing video related network traffic becomes of
paramount importance.

Video coding is the process of compressing a raw video se⁃
quence using some standards. Examples of such standards are
H.264/AVC [4] which is the most popular (but aging) standard
currently in use, High Efficiency Video Coding (HEVC) [5]
and VP9 [6], which are newer standards achieving higher com⁃
pression ratios compared to H.264/AVC. Although video cod⁃
ing is a computationally demanding task, it is usually per⁃
formed at the point where the initial video is captured (camera,
smart device etc.), often with the aid of specialized hardware.
Thus, the initial coding of a video sequence does not hinder a
cloud based social media platform (SMP) computationally wise

and the only overhead is the consumed bandwidth for upload⁃
ing. However, in order to be able to deliver the video sequence
to a variety of clients differing in screen resolutions, decoders
and network capabilities, the originally uploaded sequence
must be encoded into multiple output sequences of various res⁃
olutions, bitrates, quality levels and perhaps coding standards.
This process is called transcoding and burdens computational⁃
ly and network⁃wise the SMP’s cloud. In particular, the case
of live casting offers the most challenges since real time perfor⁃
mance is a requirement.

Motivated by the above, we investigate the case where an
SMP can take advantage of mini ⁃data centers existing at net⁃
work edges in order to offload live transcoding jobs, thus, sav⁃
ing resources and bandwidth. Fig. 1 illustrates an example
whereby two broadcasts are performed, one at 1080p and the
other at 720p from two different edges. In the first case
(1080p), the sequence is not transcoded at the edge but trans⁃
mitted to one of the SMP’s data centers for processing. Then
two different outputs (720p and 480p) are sent to some Content
Delivery Network (CDN). In contrast to this, the other input se⁃
quence (720p) is transcoded into two output sequences at the
edge. Copies of the outputs are sent to the CDN and also used
to satisfy local demands (480p). Clearly, the second alternative
of using edge transcoding reduces both the processing and net⁃
work resource consumption at the SMP’s cloud.

In this paper, we tackle the associated scheduling problem

M

ZTE COMMUNICATIONSZTE COMMUNICATIONS 35April 2017 Vol.15 No. 2

1



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

Special Topic

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

ZTE COMMUNICATIONSZTE COMMUNICATIONS36 April 2017 Vol.15 No. 2

induced by the scenario of Fig. 1. Namely, given edge resourc⁃
es and the characteristics of arriving transcoding tasks, task ⁃
server assignment must be made so that the percentage of
tasks not processed by the edge (satisfied with overhead by
SMP’s Cloud) is minimized. We evaluate different scheduling
heuristics for the scheduling problem under the constraint that
each assigned task must obtain the required processing power
to exhibit real time behavior. We then examine the case where
the aforementioned constraint is softened, allowing for some
quality loss in order to increase the number of tasks assigned
to the edge. All heuristics are evaluated using a dataset of
Twitch broadcasts [7] and realistic values for transcoding job
characteristics obtained by using x264 codec [8] over class B
and class A common test video sequences [9].

The rest of the paper is organized as follows. Section 2 dis⁃
cusses the related work. Section 3 presents the problem formu⁃
lation. Heuristics are illustrated in Section 4 and evaluated in
Section 5. Finally Section 6 concludes the paper.

2 Related Work
The number of transcoding tasks hosted by edges is dictated

by their processing requirements. Related to this requirement
is research concerning speeding up of video coding and trans⁃
coding. An avid research exists on parallelizing video coding
with approaches varying from coarse grained parallelism,
whereby parallelism is considered at the level of group of Mac⁃
roblocks (H.264/AVC) or Coding Tree Units (CTUs in HEVC),
to finer grained parallel approaches implementable within a
block of pels. Examples of coarse grained parallelization in⁃
clude slices, tiles and wavefront in the HEVC standard. Effi⁃
cient implementation of these parallel options are described in
[10] for slices, [11] for tiles and [12] for wavefront. Fine
grained techniques usually consist of applying the Single In⁃
struction Multiple Data (SIMD) paradigm at various levels of
the encoding [13] and decoding stages [14].

As far as transcoding is concerned, a straightforward method

is to first decode fully the input sequence, scale its resolution
and then re⁃encode it. More efficient approaches target at uti⁃
lizing the information already coded in the input, most notice⁃
ably the one concerning motion estimation, in order to reduce
the search space when transcoding to another standard. Exam⁃
ple works in the area include [15] where an H.264/AVC to
HEVC transcoding architecture is presented that achieves a
nominal speedup reaching 8x, when compared to re⁃encoding
from scratch. If a bitrate change rather than a change in stan⁃
dard is needed, the process is often referred to as transrating.
A survey on fast transrating methods can be found in [16]. In
the experiments we obtained transcoding task weights by using
the straightforward approach of re⁃encoding without using the
information already coded. This was done both for reasons of
simplicity and due to code availability (ffmpeg and x264 used).
However, based on the aforementioned research we scaled the
values obtained to depict the case where a more efficient trans⁃
coder is used.

Concerning cloud transcoding, most works focused on pro⁃
viding job scheduling techniques at the level of a server clus⁃
ter or a data center. In [7], the authors considered the case of
live video transcoding and proposed an integer linear program
(ILP) formulation to tackle scheduling decisions. An online al⁃
gorithm that schedules jobs among the servers of a datacenter
with the target of satisfying delay requirements while using
minimum energy was proposed in [17]. In [18] the scope was a
single cluster and the optimization target was to keep the serv⁃
ers load balanced. In [19] an admission control algorithm was
developed that differs or rejects requests that cannot be satis⁃
fied based on current workload. It is worth noting that this is
the contrary approach to the one used in this paper for the case
of edges, whereby it might be viable to reduce quality by over⁃
assigning tasks to servers if the relevant benefits from edge pro⁃
cessing are deemed sufficient. Finally, in [20] a combined
caching and transcoding approach is discussed, whereby trans⁃
coding jobs are partially processed to allow for efficient cach⁃
ing. The target considered in this paper, i.e., live transcoding
excludes partial transcoding as an option. Caching and replica⁃
tion techniques in the cloud are surveyed in [21], while [22]
and [23] concern efficient video delivery.

Overall, compared to [7], [17], [18], [19] and [20], we differ
in scope since we examine transcoding at edges while we view
[21], [22] and [23] as orthogonal to our approach. Perhaps the
closest work in the literature is [24], where system architecture
for edge transcoding is described. Nevertheless, scheduling is⁃
sues were not tackled in the manner done in this paper.

3 Problem Definition
We consider the case of a media provider receiving requests

for live video casting, whereby the input stream must be trans⁃
coded into a set of output streams with different resolution, bi⁃
trate and quality demands. We consider two options for the set

▲Figure 1. Example system model with edge transcoding.

Media provider
cloud Delivery cloud

720p

480p

480p
360p1080p

1080p 720p 480p

2



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

Special Topic

of transcoding tasks associated with each input. Either they are
all assigned to a mini⁃datacenter existing at the edge of the net⁃
work or they are all assigned to the backend main datacenter of
the media provider. Clearly, if the tasks are processed at the
edge, the processing workload at the backend datacenter is re⁃
duced and the network overhead for transmitting the input se⁃
quence is avoided.

Let the mini⁃datacenter consist of S servers, with Si denoting
the ith of them, assuming a total ordering (1≤i≤S). Each server
has an associated processing capacity (let Ci), which denotes
the number of baseline transcoding tasks that can be processed
concurrently at real time. Baseline tasks are the ones requiring
the minimum power to process. Let Bj be the jth broadcast, as⁃
suming an ordering of the B total broadcasting events (1≤j≤B).
Similarly, let sj and dj be the arrival time and duration of Bj, re⁃
spectively. Each broadcast entails a set of transcoding tasks.
Let T be the total number of transcoding tasks for all broad⁃
casts, and Tk be the kth such task, assuming a total ordering of
them (1≤k≤T). We represent whether Tk is a task of Bj or not,
using a Boolean matrix A of B×T size, whereby Ajk=1 if and on⁃
ly if (iff) Bj has task Tk and 0 otherwise. Moreover, Wk depicts
the relevant weight of Tk in processing terms over the baseline
task. Put in other terms, Wk shows how much more computa⁃
tionally demanding Tk is, compared to the baseline scenario.
Last, let X be an S×T Boolean matrix used to encode task serv⁃
er assignments as follows: Xik=1 iff Tk is assigned for process⁃
ing at Si, otherwise Xik=0. We assume that once assigned, a
task cannot be preempted and will remain for the whole dura⁃
tion [sj, ... , sj+dj]. We consider that we want to optimize the sys⁃
tem starting from a clean state (no task assignments exist) over
a time frame divided into E equally sized slots (sj and dj values
are now measured in time slot terms). Let et be the tth such
time slot, with a corresponding assignment matrix Xt. We typi⁃
cally formulate the problem as follows: Find all values in the E
total matrices Xt, so that the objective function f given in (1) is
maximized:

f =∑
t = 1

E∑
i = 1

S ∑
k = 1

T

X t
ik(1 -X t - 1

ik ) , (1)
subject to the following constraints:
æ
è
ç

ö
ø
÷∑

i = 1

S ∑
k = 1

T

AjkX
t
ik -∑

k = 1

T

Ajk ∑
i = 1

S ∑
k = 1

T

AjkX
t
ik = 0, ∀j, t = sj, (2)

X t
ik =X t + 1

ik , ∀i,k, t|sj ≤ t < sj + dj ∧ Ajk = 1, (3)
∑
i = 1

S ∑
k = 1

T

AjkX
t
ik = 0, ∀j, t|t < sj⋁t > sj + dj, (4)

∑
k = 1

T

X t
ikWk ≤Ci, ∀i, t, (5)

∑
i = 1

S

X t
ik ≤1, ∀k, t . (6)

The objective function encodes the tasks that will be as⁃
signed to the edge. Eqs. (2)-(6) give the main constraints of the
problem. Constraint (2) states that either all tasks of a broad⁃

cast Bj will be assigned to the edge at the time the broadcast ar⁃
rives or none. Constraint (3) enforces that the decision taken
for a transcoding task at the time of its broadcast arrival re⁃
mains for the duration of the broadcast. Constraint (4) ensures
that neither before a broadcast arrival, nor after its end time,
can a corresponding task be scheduled for edge transcoding.
Constraint (5) dictates that a server can exceed its capacity at
no point in time. Finally, (6) states that a task can only be
scheduled at one server.

Clearly, the fact that broadcasts are known in advance reduc⁃
es the applicability of the presented problem formulation to
cases of prescheduled event covering, e.g., sports. Neverthe⁃
less, the formulation provides a thorough definition of the opti⁃
mization target and the related constraints. These remain the
same both in the static problem variation presented and in the
dynamic case. A last note concerns complexity. It can be
shown that the relevant decision problem is NP⁃complete since
the processing capacity constraint at the servers effectively in⁃
troduces a (0, 1) Knapsack component. Next, we present heu⁃
ristics for dynamic scheduling of transcoding tasks at the net⁃
work edge.

4 Scheduling Heuristics

4.1 Scheduling with Tight Task QoS Requirements
The proposed heuristics tackle the dynamic version of the

scheduling problem presented in the previous section. Specifi⁃
cally, upon the arrival of a broadcast request, the necessary
transcoding tasks are defined. Then, they are sorted according
to their weight and considered either in increasing order (MIN
policy) or in decreasing (MAX policy). Each task is assigned to
a server (using one of the policies described in the sequel) pro⁃
vided the task computational demands can be met by the serv⁃
er as per (5). If a suitable server is found for every transcoding
task of the broadcast under consideration, the assignments are
committed; otherwise, even if one task fails to find a hosting
server, all the tasks are sent to the SMP’s datacenter for pro⁃
cessing. The assignment policies considered are based on the
well⁃known bin⁃packing heuristics:

•Best Fit (BF): Select the server where the remaining ca⁃
pacity, left after task assignment, is the minimum possible.

•Worst Fit (WF): Similar to BF only that the server with
the maximum remaining capacity will be selected.

•First Fit (FF): The first server where the task fits will be
selected.

The corresponding heuristics are named after the order with
which the task list is considered and the packing method fol⁃
lowed. For instance MAX⁃BF refers to the heuristic that consid⁃
ers the heaviest task first and assigns it using Best Fit.
4.2 Scheduling with Relaxed Task QoS Requirements

The motivation for the relaxed QoS case is the following. As⁃

ZTE COMMUNICATIONSZTE COMMUNICATIONS 37April 2017 Vol.15 No. 2

3



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

sume that all but one task of a broadcast could fit to the avail⁃
able servers of the edge. With strict QoS requirements, none of
these tasks will be assigned. However, it might be possible to
assign the remaining task to one server so that its processing
capacity is exceeded by a very small margin. In practice, this
means that all the tasks processed by this server will exhibit a
small quality drop. For instance, if a broadcaster transmits at
30 fps (frames per second) then a 3.3% drop at the processing
rate of one of its transcoding tasks means that roughly the out⁃
put stream will be at 29 fps. Depending on decoder characteris⁃
tics, such a drop might not even be noticeable by a human
viewer. Assuming that p denotes the maximum percentage of al⁃
lowable performance drop, (5) becomes:
∑
k = 1

T

X t
ikWk ≤(1 + p)Ci, ∀i, t . (7)

The heuristics first attempt to allocate all the tasks of a
broadcast as per Section 4.1. In case a task does not fit, it is
considered for assignment using (7) as server capacity con⁃
straint and one of the below described policies.

•Min Quality Decrease (MQD): Selects the server that in⁃
curs the minimum proportional capacity violation (equivalent
to asking for the minimum quality penalty for its hosted tasks).

•First Fit (FF): The first server where the task fits as per
(7) will be selected.

•View Weighted Penalty (VWP): Weights the quality pen⁃
alty of each task by the number of its viewers. The server with
the minimum aggregated weighted quality penalty value is se⁃
lected.

5 Experiments

5.1 Setup
To simulate broadcasting activity, we used the same dataset

from Twitch as the one described in [7]. We kept the portion of
the dataset representing one day activity (Jan. 6th, 2014). We
then filtered it by deleting entries with broadcasts having no
viewers and the broadcasts of resolution less than 220p. To
keep the simulation time manageable we considered the follow⁃
ing 5 resolutions: 240p, 360p, 480p, 720p and 1080p. In case
a broadcast in the trace did not follow one of the previously
mentioned resolutions, we clustered it to its closest matching.
We assumed that a broadcast must be transcoded to all the res⁃
olutions that were lower than the one it used. Clearly, with this
setting the maximum number of transcoding tasks incurred by
a broadcast is 4, corresponding to a 1080p stream that must be
downscaled to 720p, 480p, 360p and 240p. Upscaling was not
considered in the experiments. Finally, for simulation purposes
we assumed that all videos used 30 fps. Furthermore, the re⁃
corded in the dataset viewing demand was split equally among
the resolutions used by a broadcast, i.e., the input and all low⁃
er ones. Table 1 summarizes some of the dataset characteris⁃

tics, while Fig. 2 plots the broadcasting job arrival rates as a
histogram of a 1000 seconds (s) step. As it can be seen, the ar⁃
riving jobs do not exhibit sharp peaks (at least with the used in⁃
terval), but the distribution is rather uniform. This favors job
scheduling at edges since it makes sizing decisions for edges
less demanding. However, duration of broadcasts does not fol⁃
low a similar trend. As noted in Table 1, the difference be⁃
tween the average and maximum duration is two orders of mag⁃
nitude, implying a heavy tailed distribution. This hinders
scheduling decisions, since it means that duration estimation
will be hard to achieve in the general case. For this reason,
none of the scheduling heuristics described in Section 4 uses
such estimates.

Next, we needed to characterize the weights of the transcod⁃
ing tasks. For this reason we used class A and class B common
test video sequences and transcoded them to the levels for
which we wanted to obtain weight values. To do so, a sequence
was first fully decoded, then scaled to the desired resolution us⁃
ing ffmpeg and then encoded using x264. The encoding set⁃
tings followed the Peak Signal to Noise Ratio (PSNR) tailored
scenario of [25], which aims at maximizing quality in PSNR
terms. The exact parameters are given below (Kimono exam⁃
ple): x264 ⁃⁃input⁃depth 8 ⁃⁃frames 0 ⁃⁃input⁃res 1920x1080 ⁃⁃
fps 24 ⁃⁃input⁃csp i420 ⁃⁃log⁃level debug ⁃⁃tune psnr ⁃⁃psnr ⁃⁃
profile high ⁃⁃preset placebo ⁃⁃keyint 96 ⁃⁃min⁃keyint 96 ⁃⁃me

Special Topic

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

ZTE COMMUNICATIONSZTE COMMUNICATIONS38 April 2017 Vol.15 No. 2

▼Table 1. Dataset for broadcasters (general characteristics)

Name
Dataset duration

Average broadcast duration
Max broadcast duration
Number of broadcasts
Total transcoding tasks

Percentage of braodcasts at 1080p
Percentage of braodcasts at 720p
Percentage of braodcasts at 480p
Percentage of braodcasts at 360p
Percentage of braodcasts at 240p

Value
75,079 s
23,263.4 s
1.05E6 s
786,100
1,244,450
26.21%
53.24%
11.18%
7.49%
1.86%

▲Figure 2. Histogram for broadcasting arrival rates.

71000570004300029000150001000
Time (s)

15000

10000

5000

0

Job
arri

val
s

4



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

umh ⁃⁃merange 240 ⁃⁃ref 4 ⁃⁃partitions all ⁃⁃threads 1 ⁃⁃subme
9 ⁃⁃aq⁃mode 0 ⁃⁃aq⁃strength 0.0 ⁃⁃psy⁃rd 0.0 ⁃⁃output kimo⁃
no_out.264 Kimono_in.yuv.

Table 2 summarizes the general characteristics of the test
sequences, together with the coding time for each targeted reso⁃
lution, measured as the number of frames per second pro⁃
cessed by the codec. The case of 240p forms the baseline trans⁃
coding scenario, with the remaining resolutions assigned pro⁃
portional weights.

Having defined the time of the baseline scenario and task
weights accordingly, next we define server capacity in the fol⁃
lowing manner. In order to fully control the system environ⁃
ment we used a dedicated server for which we had full owner⁃
ship. The server used for the x264 coding jobs carried two 6⁃
core Intel Xeon E5⁃2630 CPUs running at 2.3 GHz. Since the
coding speeds at Table 2 used one thread and the nominal rate
considered for the simulation is 30 fps, each core of the server
accounts for a processing capacity of 21.6/30 (the baseline sce⁃
nario). The total server capacity is then calculated by multiply⁃
ing with 12 (the total number of physical cores) and equals
8.64. Since our server setting is not of generic use, we translate
it into one of the Amazon EC2 instances [26] to make our simu⁃
lation setting more applicable. Specifically, we consider the C3
instances which are recommended for video coding. Compar⁃
ing the processor passmark ratios between the CPU of our serv⁃
er and the one used in the C3 instances, i.e., Intel Xeon E5⁃
2680 v2 (Ivy Bridge), it can be estimated that the instance
c3.4xlarge will account for a speedup of 2.2x compared to our
server. Since video coding is CPU⁃bound, the aforementioned
methodology (i.e., comparing CPUs) provides a good estimation
on relative performance. Last, we consider the case where spe⁃
cialized transcoding software is available, which accounts for a
speedup of 8x (same as in [15]) compared to the simple meth⁃
odology used to obtain the processing rates of Table 2.
5.2 Results for Tight QoS Requirements

Here we present results for the case where the assigned
transcoding tasks at the edge must be satisfied at their nominal

rate (30 fps). We consider two scenarios. In the first (homoge⁃
neous), 1000 servers each of capacity described in Section 5.1
exist in the micro datacenter of the edge, while in the second
scenario (heterogeneous) 500 servers have the aforementioned
capacity and 500 half of it (presumably equivalent to a
c3.2xlarge EC2 instance). Fig. 3 plots the performance of the
scheduling heuristics, measured in terms of the percentage of
broadcasts that are assigned for edge transcoding. Results
show that the same trends are exhibited both in the homoge⁃
neous and the heterogeneous cases. The later achieves lower
performance since it accounts for smaller total capacity. Fur⁃
thermore, sorting the transcoding tasks of a broadcast has mar⁃
ginal effect. This is presumably due to the fact that the tasks
are scheduled as soon as a broadcast arrives and are rather
small in number, compared to the available servers. Clearly
the WF policy outperforms the other alternatives by a substan⁃
tially large margin (an extra 5% roughly of the arriving re⁃
quests can be accommodated by the edge).

Having identified WF to be the most promising heuristic, we
evaluated the impact of the arrival rate on the achievable per⁃
formance. To do so, we used the same trace with above, but
sampled it every 1, 2 and 3 entries. Clearly, a sampling rate of
1 is equivalent to using the whole dataset (Fig. 3), while 2 and
3 effectively account for 1/2 and 1/3 of the arrival rate. Fig. 4
plots the performance of the WF scheme for the three arrival
rates and for both the homogeneous and heterogeneous cases.
As expected, the percentage of jobs that can be satisfied by the
edge increases as the arrival rate decreases. It is worth noting
that with 1/3 arrival rate which accounts for roughly 262,000
daily requests, roughly 60% of them (homogeneous case) can
be satisfied by the edge. This translates for great load reduc⁃
tion at the back end datacenters.
5.3 Results for Soft QoS Requirements

We consider that the processing requirement of real time
performance is relaxed as per Section 4.2. We evaluated the
performance of the algorithms of Section 4.2 when combined

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 39April 2017 Vol.15 No. 2

BF: Best Fit FF: First Fit WF: Worst Fit

▼Table 2. Video sequences used for weight calculation

Name
BasketballDrive

BQTerrace
Cactus
Kimono

ParkScene
PeopleOnStreet

Traffic
Average
Weights

Resolution
1920×1080
1920×1080
1920×1080
1920×1080
1920×1080
2560×1600
2560×1600

⁃
⁃

Frames
500
600
500
240
240
150
150
⁃
⁃

Time
240p (fps)
15.78
29.10
25.48
18.54
24.95
10.01
27.36
21.60
1.00

Time
360p (fps)

5.37
9.11
8.77
6.05
7.62
2.82
8.06
6.82
3.16

Time
480p (fps)

3.78
6.42
5.09
4.33
5.28
2.00
5.77
4.66
4.63

Time
720p (fps)

1.47
2.37
1.96
1.62
1.94
0.74
2.17
1.75
12.34

▲Figure 3: Percentage of broadcasts processed by the edge (1000 servers,
full dataset). Two different cases: homogeneous and heterogeneous.

Heterogeneous

30

Per
cen

tag
eo

fbr
oad

cas
ts

tran
sco

ded
ate

dge
(%)

Homogeneous

25
20
15
10
5
0

MIN-BF MIN-WF MIN-FF MAX-BF MAX-WF MAX-FF

5



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

with MAX⁃WF for various levels of QoS reduction, namely: 0%
(no reduction ⁃ real time performance), 5% , 10% , 15% and
20% . Fig. 5 plots the percentage of broadcasts having their
transcoding jobs assigned to the micro datacenter, for the het⁃
erogeneous case used in Figs. 3 and 4 and with the whole trace
as input. All three heuristics assign to the edge an increasing
number of jobs as QoS requirements are reduced. Among the
algorithms, MQD achieves the best performance, followed by
VWP and FF. As it can be observed, with a 5% decrease in
processing rate, an extra 2% of jobs can be assigned to the
edge, while with 20% an extra 4.5%. Although a 20% reduc⁃
tion seems impractical at first glance, it roughly means that in⁃
stead of processing a stream at 30 fps, the stream might be pro⁃
cessed at 24 fps. It is worth noting that this is the lowest rate
for 1080p TV sets. Overall, by relaxing the nominal real time
processing rate for transcoding jobs, significant extra load
could be offset from back end datacenters.

In order to further quantify the impact of QoS reduction, in
Fig. 6 we plot the average viewing quality (for the viewers satis⁃

fied by the edge) as a percentage of the achieved fps when com⁃
pared to real time 30 fps. VWP achieves the best performance,
which for a 15% allowable reduction (0.15 point in x ⁃ axis)
leads to an average viewing quality of 93% . Put it in other
terms the average processing rate will be almost 28 fps. For the
same QoS reduction (15%), Fig. 5 depicts that VWP assigns an
extra ~3.5% of jobs, or roughly 27,000 more broadcasts at the
edge micro datacenter. Thus, an interesting tradeoff is present
whereby VWP can offset substantial load towards the edge mi⁃
cro datacenter at only a small decrease on average viewing
quality.

6 Conclusions
In this paper we examined scheduling heuristics for the

problem of assigning live transcoding jobs at an edge micro
datacenter. We considered two main cases. The first accounts
for real time performance, while the second allows small quali⁃
ty degradation on the output video streams in order to increase
the assigned jobs to the micro datacenter. Through simulation
experiments using a realistic dataset, it is concluded that inter⁃
esting tradeoffs can be obtained by a method (VWP) that takes
into account viewer perceived QoS.

Special Topic

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

ZTE COMMUNICATIONSZTE COMMUNICATIONS40 April 2017 Vol.15 No. 2

▲Figure 4. Percentage of broadcasts processed by the edge for
decreasing arrival rate (1000 servers).

▲Figure 5. Percentage of broadcasts processed by the edge for varying
QoS reduction percentages (full dataset, heterogeneous servers).

FF: First Fit MQD: Min Quality Decrease VWP: View Weighted Penalty

▲Figure 6. Average QoS of viewers as the allowable reduction in QoS
for edge transcoding jobs is increased (full dataset, heterogeneous
servers).

FF: First Fit MQD: Min Quality Decrease VWP: View Weighted Penalty

References
[1] J. Gubbi, R Buyya, S. Marusic, and M. Palaniswami,“Internet of things (IoT): a

vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sept. 2013. doi: 10.1016/j.
future.2013.01. 010.

1/3

70

Per
cen

tag
eo

fbr
oad

cas
tst

ran
sco

ded
at

edg
e(%

)

1/21

60
50
40
30
20
10
0

Arrival rate
Homogeneous Heterogeneous

0.05

29

Per
cen

tag
eo

fbr
oad

cas
tst

ran
sco

ded
ate

dge
(%)

28
27
26
25
24
23
22
21 0 0.10 0.15 0.20

Reduction in QoS
VWP

100

Ave
rag

eQ
oS

vie
wer

ssa
tisf

ied
by

edg
etr

ans
cod

ing
(%)

0.20
Reduction in QoS

0.150.100.050

VWP

98
96
94
92
90
88
86
84
82
80

FF MQD

FF MQD

6



D:\EMAG\2017-04-56/VOL15\F1.VFT——7PPS/P

Scheduling Heuristics for Live Video Transcoding on Cloud Edges
Panagiotis Oikonomou, Maria G. Koziri, Nikos Tziritas, Thanasis Loukopoulos, and XU ChengZhong

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 41April 2017 Vol.15 No. 2

[2] S. K. Khaitan and J. D. McCalley,“Design techniques and applications of cyber
physical systems: a survey,”IEEE Systems Journal, vol. 9, no. 2, pp. 350-365,
Jun. 2015. doi: 10.1109/JSYST.2014.2322503.

[3] Cisco Systems Inc. (2017, Jan. 30). Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2015-2020 [Online White Paper]. Available: http:
//www.cisco.com/c/en/us/solutions/collateral/service⁃provider/visual⁃networking⁃
index⁃vni/mobile⁃white⁃paper⁃c11⁃520862.html

[4] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,“Overview of the
H.264/AVC video coding standard,”IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560- 576, Jul. 2003. doi: 10.1109/
TCSVT.2003.815165.

[5] G. J. Sullivan, J. ⁃R. Ohm, W.⁃J. Han, and T. Wiegand,“Overview of the high
efficiency video coding (HEVC) standard,”IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012. doi:
10.1109/TCSVT.2012.2221191.

[6] D. Grois, D. Marpe, A. Mulayoff, et al.,“Performance comparison of H.265/
MPEG ⁃ HEVC, VP9, and H.264/MPEG ⁃ AVC encoders,”in Picture Coding
Symposium (PCS), San Jose, USA, Dec. 2013, pp. 394-397. doi: 10.1109/PCS.
2013.6737766.

[7] R. A. Pardo, K. Pires, A. Blanc, and G. Simon,“Transcoding live adaptive video
streams at a massive scale in the cloud,”in ACM SIGMM Conference on
Multimedia Systems (MMSys), Portland, USA, Mar. 2015, pp. 49-60. doi:10.1145/
2713168.2713177.

[8] VideoLAN. (2017, Jan. 30). x264 home page [Online]. Available: http://www.
videolan.org/developers/x264.html

[9] F. Bossen,“Common test conditions and software reference configurations,”JCT⁃
VC, San Jose, USA, Document: JCTVC⁃H1100, Feb. 2012.

[10] M. G. Koziri, P. Papadopoulos, N. Tziritas, et al.,“Slice⁃based parallelization
in HEVC encoding: realizing the potential through efficient load balancing,”in
IEEE International Workshop on Multimedia Signal Processing (MMSP),
Montreal, Canada, Sept. 2016, pp. 1-6. doi: 10.1109/MMSP.2016.7813354.

[11] M. Shafique, M. U. K. Khan, and J. Henkel,“Power efficient and workload
balanced tiling for parallelized high efficiency video coding,” in IEEE
International Conference on Image Processing (ICIP), Paris, France, Oct. 2014,
pp. 1253-1257. doi: 10.1109/ICIP.2014.7025250.

[12] C. C. Chi, M. A. Mesa, B. Juurlink, et al.,“Parallel scalability and efficiency of
HEVC parallelization approaches,”IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1827-1838, Dec. 2012. doi: 10.1109/
TCSVT.2012.2223056.

[13] Y.⁃J. Ahn, T.⁃J. Hwang, D.⁃G. Sim, and W.⁃J. Han,“Implementation of fast
HEVC encoder based on SIMD and data⁃level parallelism,”EURASIP Journal
Image and Video Processing, vol. 16, Dec. 2014. doi: 10.1186/1687⁃5281⁃2014
⁃16.

[14] M. G. Koziri, D. Zacharis, I. Katsavounidis, and N. Bellas,“Implementation of
the AVS video decoder on a heterogeneous dual⁃core SIMD processor,”IEEE
Transactions on Consumer Electronics, vol. 57, no. 2, pp. 673-681, May 2011.
doi: 10.1109/TCE.2011.5955207.

[15] J. F. Franche and S. Coulombe,“Fast H.264 to HEVC transcoder based on post
⁃ order traversal of quadtree structure,”in IEEE International Conference on
Image Processing (ICIP), Quebec, Canada, Sept. 2015, pp. 477- 481. doi:
10.1109/ICIP.2015.7350844.

[16] I. Ahmad, X. Wei, Y. Sun, and Y.⁃Q. Zhang,“Video transcoding: an overview
of various techniques and research issues,” IEEE Transactions on
Multimedia, vol. 7, no. 5, pp. 793-804, Oct. 2005. doi: 10.1109/TMM.2005.
854472.

[17] W. Zhang, Y. Wen, J. Cai, and D. O. Wu,“Toward transcoding as a service in a
multimedia cloud: energy ⁃ efficient job ⁃ dispatching algorithm,”IEEE
Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2002- 2012, Jun.
2014. doi: 10.1109/TVT.2014.2310394.

[18] S. Lin, X. Zhang, Q. Yu, et al.,“Parallelizing video transcoding with load
balancing on cloud computing,”in IEEE International Symposium on Circuits
and Systems (ISCAS), Beijing, China, May 2013, pp. 2864-2867. doi: 10.1109/
ISCAS.2013.6572476.

[19] A. Ashraf, F. Jokhio, T. Deneke, et al.,“Stream⁃based admission control and
scheduling for video transcoding in cloud computing,”in IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
Delft, Netherlands, May 2013, pp. 482-489. doi: 10.1109/CCGrid.2013.21.

[20] G. Gao, W. Zhang, Y. Wen, et al.,“Towards cost⁃efficient video transcoding in
media cloud: insights learned from user viewing patterns,”IEEE Transactions
onMultimedia, vol.17,no.8,pp.1286-1296,Aug.2015.doi:10.1109/TMM.2015.
2438713.

[21] S. U. R. Malik, S. U. Khan, S. J. Ewen, et al.,“Performance analysis of data

Intensive cloud systems based on data management and replication: a
survey,”Distributed and Parallel Databases, vol. 34, no. 2, pp. 179-215, Jun.
2016. doi: 10.1007/s10619⁃015⁃7173⁃2.

[22] W. Ji, Z. Li, and Y. Chen,“Joint source ⁃channel coding and optimization for
layered video broadcasting to heterogeneous devices,”IEEE Transactions on
Multimedia, vol. 14, no. 2, pp. 443-455, Apr. 2012. doi: 10.1109/TMM.2011.
2177645.

[23] W. Ji, Z. Li, and Y. Chen,“Content ⁃ aware utility ⁃ fair video streaming in
wireless broadcasting networks,”in IEEE International Conference on Image
Processing (ICIP), Brussels, Belgium, Sept. 2011, pp. 145-148. doi: 10.1109/
ICIP.2011.6115717.

[24] M. T. Beck, S. Feld, A. Fichtner, et al.,“ME ⁃ VoLTE: network functions for
energy ⁃ efficient video transcoding at the mobile edge,” in International
Conference on Intelligence in Next Generation Networks (ICIN), Paris, France,
Feb. 2015, pp. 38-44. doi: 10.1109/ICIN.2015.7073804.

[25] J. De Cock, A. Mavlankar, A. Moorthy, and A. Aaron,“A large ⁃ scale video
codec comparison of x264, x265 and libvpx for practical VOD applications,”
SPIE Applications of Digital Image Processing XXXIX, vol. 9971, 997116.
Sept. 2016. doi: 10.1117/12.2238495.

[26] Amazon Web Services. (2017, Jan. 30). Amazon EC2 Instance Types [Online].
Available: https://aws.amazon.com/ec2/instance⁃types/

Manuscript received: 2017⁃02⁃09

Panagiotis Oikonomou (paikonom@uth.gr) received his Diploma degree (2008) and
M.Sc. degree (2010) from the Department of Electrical and Computer Engineering,
University of Thessaly, Greece. He is currently a Ph.D. candidate at the same De⁃
partment. His research interests include optimization algorithms and fuzzy logic
methods.
Maria G. Koziri (mkoziri@uth.gr) received her Diploma degree in computer engi⁃
neering from the Technical University of Crete, Greece in 2003 and Ph.D. degree in
computer science from the University of Thessaly, Greece in 2007. She is currently
a visiting lecturer in the Computer Science Department of the University of Thessa⁃
ly. Her research interests include video compression, scalable video coding, rate ⁃
distortion optimization and computer architecture.
Nikos Tziritas (nikolaos@siat.ac.cn) received his B.Sc. degree from the Technologi⁃
cal Educational Institute of Serres, Greece in 2004, and M.Sc. and Ph.D. degrees
from the University of Thessaly, Greece in 2006 and 2011, respectively. He is cur⁃
rently an associate professor in Shenzhen Institutes of Advanced Technology, Chi⁃
nese Academy of Sciences, China. His work has appeared in over 35 publications.
He is the recipient of the Award for Excellence for Early Career Researchers in
Scalable Computing from IEEE Technical Committee in Scalable Computing in
2016.
Thanasis Loukopoulos (luke@dib.uth.gr) received his Ph.D. degree in computer sci⁃
ence from the Hong Kong University of Science and Technology, China. He is cur⁃
rently a lecturer at the Department of Computer Science and Biomedical Informatics
of the University of Thessaly, Greece. His research interests are in green computing,
cloud computing, WSNs, scheduling, load balancing and video coding paralleliza⁃
tion. His work appeared in over 50 publications. He had the best paper award in
ICPP 2001.
XU Cheng⁃Zhong (cz.xu@siat.ac.cn) received the Ph.D. degree in computer science
from the University of Hong Kong, China in 1993. He is currently a professor in the
Department of Electrical and Computer Engineering of Wayne State University, Chi⁃
na and the director of Cloud and Internet Computing Laboratory (CIC) and Sun’s
Center of Excellence in Open Source Computing and Applications (OSCA). His re⁃
search interest is mainly in scalable distributed and parallel systems and wireless
embedded computing devices. He has published two books and more than 160 arti⁃
cles in peer⁃reviewed journals and conferences in these areas.

BiographiesBiographies

7


