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1 Introduction

ver since the Internet and mobile computing domi-

nated people’ s daily life, the continuing supply of

big data, which relies on immense computing pow-

er to extract the hidden big values, has demanded

higher speed of data storage. The big data trend challenges the
design of computer systems, on both hardware and software, to
sustain the development of new data intensive applications.
For example, deep data analytics and in-memory computing de-
mand shorter turn-around time between processing iterations,
which translates to faster data transportation between storage
and processors. As of its current stage, in-memory computing
uses dynamic random-access memory (DRAM) as the main me-
dia for hot data storage given its advantage in speed and band-
width. However, DRAM would soon hit energy wall when the
total memory capacity keeps growing in a data center. Accord-
ing to a recent study, 100 petabytes main memory with DDR 3
DRAM would consume 52MW power, which is far beyond the
energy budget for building a future exascale data center [1], [2].
The combined requirements on capacity, performance and
power have motivated both industry and academia to pursue
new technologies and build alternative memory devices to
bridge the gap between fast DRAM and slow disks. In recent
years, semiconductor manufacturers have invested heavily on
non-volatile memory (NVM) devices. As the most mature NVM
in its class, Flash is already widely used in commercial servers
due to its high density and low static power consumption. How-
ever, Flash has its notable downside. Memory wear and block
erasure make it ill - fit for random read and write for which
DRAM has outstanding performance [3]. Alternative NVM
technologies have advanced rapidly, each expected to improve
upon some or all of the Flash weaknesses. Among the most in-
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The challenges of power consumption and memory capacity

of computers have driven rapid development on non-volatile
memories (NVM). NVMs are generally faster than traditional
secondary storage devices, write persistently and many offer
byte addressing capability. Despite these appealing features,
NVMs are difficult to manage and program, which makes it
hard to use them as a drop-in replacement for dynamic ran-
dom-access memory (DRAM). Instead, a majority of mod-
ern systems use NVMs through the 10 and the file system
abstractions. Hiding NVMs under these interfaces poses chal-
lenges on how to exploit the new hardware’ s performance
potential in the existing system software framework. In this
article, we survey the key technical issues arisen in this area
and introduce several recently developed systems each of
which offers novel solutions around these issues.

I fcoruorc

\il-volatile memory; persistent memory; file system; 10 sys-
tem

fluential new types of NVMs are Phase Change Memory(PCM),
Spin Transfer Torque RAM(STT - RAM), Resistive RAM
(RRAM), Racetrack Memory, and Domain Wall Memory
(DWM). Most recently, Intel and Micron jointly announced 3D
XPoint and claimed the new NVM delivers a performance of
1000 times shorter latency and longer endurance than of the
conventional Flash. The density and performance boost is said
to be enabled by a novel structure of memory cell with a stack-
able data access array.

Other than higher read -write performance, most of the new
NVMs support some extent of byte-addressable random access.
The fine-grained access capability would revolutionize the way
data is communicated between on-core and off-core memory.
Potentially, CPU could directly address the data on the second-
ary storage without first sending instructions to a device con-
troller. A secondary storage with byte-addressing capability is
usually called Storage Class Memory (SCM). Once SCM is
widely deployed, changes must be applied to the 10 interface
as well as the file system for they are traditionally optimized
for slow devices. The fast storage would make many optimiza-
tions less effective, or even harmful, and favor a simpler design
of the software stack for better performance.

The promising future of new hardware motivates software in-
novations which promote the lower level improvement to high-
er level usability. In this article we survey and introduce re-
cent advances on how the NVM adaptation is addressed in sys-
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tem software, particularly in 10 and file system.

2 10 Subsystem for NVM

Fig. 1 summarizes a standard hierarchy of system compo-
nents in which NVM devices shared the same 10 interface with
other block devices. The usual procedure of reading and writ-
ing data on a block device begins with a user program issuing
a system call with arguments specifying the location and size
into the target file in the file system. After the program is
trapped to the kernel mode, the system call request is transi-
tioned through multiple layers of kernel components, including
the file system and the block IO interface, until it’ s finally
translated into a sequence of low level instructions to the de-
vice driver. Since accessing block devices can pose a long la-
tency, the 10 requests are usually processed in an asynchro-
nous way, leveraging Direct Memory Access (DMA) and inter-
rupt handling to complete the data transfer while saving a large
amount of CPU time. The software overhead during the request
processing is caused by program state transition, file system
management, 10 scheduling, interrupt handling, buffer cache
management and so on. Studies show that the software latency
for processing blocked IO request is in the 10 microseconds on
modern Intel processors running Linux operating system (OS).
In reality, the exact software overhead varies for specific sys-
tems. Swanson et al. [4] measured that a single 512 byte 10 re-
quest incurred about 19 microseconds of software overhead on
Intel Nehalem 2.27GHz processor. In the test conducted by
Yang et al. [5], a 512 byte 10 operation cost 5 to 7 microsec-
onds in software on 2.93GHz Intel Xeon processor. Compared
to tens of milliseconds of latency due to disk access, the rela-
tive cost of software is very small. However, with NVM storage
taking place, the relative cost of software increases significant-
ly. The modern Flash solid-state drive (SSD) offers read-write
latency of tens of microseconds. It s projected that newer gen-
erations of NVM can further reduce the state-of-the-art by 10
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times [6]. With device latencygreatly reduced, the originally
small software and interface overhead will dominate the cost of
an 10 operation. Therefore, in the future NVM systems, soft-
ware and interface optimizations are the key to better storage
performance. In the following we will introduce a number of re-
cent developments on high performance 10 interface and pro-
cessing techniques for NVM storage.

2.1 Moneta

Caulfield et al. proposed Moneta [7] in 2010, an experimen-
tal NVM interface framework. Based on the simulations of
Phase - Change Memory (PCM), the experiment results show
that the Moneta interface helps random read and write perfor-
mance with an increment of 18 times than that of the baseline.
The software overhead is reduced by 60%. 4KB random read
and write throughput can be maintained at the level of the
450k TOPs. Moneta is based on a design comprised of a token
ring network and memory controller array, which improves the
10 rate by exploiting the latency and parallelism advantage of
the hardware. The detailed structure of Moneta 10 is shown in
Fig. 2. The 10 scheduler is responsible for coordinating the da-
ta transmission and request scheduling. Data is transferred be-
tween memory and device through the PCle interface. The re-
quests are exchanged in the form of a command via a token
ring network connecting the NVM memory controller and the
request queue. When the system is running, the driver software
issues 10 requests which are transmitted via the Peripheral
Component Interconnect Express (PCle) interface to the Mone-
ta scheduler and then are inserted into a first - in first - out
(FIFO) queue.Requests larger than 8KB need to be decom-
posed and transmitted in sequence. To streamline data trans-
fer, each Moneta memory controller is equipped with two 8KB
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buffers, used for caching the data read from and written to the
storage after the requests are successfully processed. To make
full use of the 2GB bandwidth of PCle, it is not enough to ex-
pand the capacity of the device interface. As Caulfield et al.
[7] have tried, a series of kernel optimization are applied to im-
prove the efficiency of request processing in CPU. These soft-
ware approaches include 1) avoiding the default 10 scheduler,
2) using the Moneta built-in atomic read - write operations in
place of locked kernel 10 operations, 3) allowing multiple
threads to process device interrupts in parallel, and 4) using
spinlocks to avoid unnecessary context switch overhead caused
by interrupts. Combining the above methods, Moneta reduces
the 10 access latency to around ls, achieving a significant
improvement relative to the baseline latency of 10 pws. Corre-
spondingly, the effective bandwidth increases to hundreds of
mega bytes per second. Compared to traditional 10, Moneta ex-
cels with its comprehensive overhead reduction on interrupts,
synchronization and scheduling.

For evaluation, the Moneta prototype was tested against a
set of database applications. One interesting observation is that
traditional database’ s optimization against disk storage can
produce counter effect on Moneta’ s own optimization for
NVM. In particular, PostgresSQL and MySQL receive less per-
formance gainfrom the new framework than the simpler Berke-

leyDB does.

2.2 Linux Multiqueue Block 10

The low latency and good parallelism of NVM storage would
be underutilized features if the original Linux 10 subsystem re-
mains using a single request queue, which would easily be-
come a performance bottleneck when the 10 request rate ap-
proaches million per second. In order to solve the scalability
problem in an NVM based system, Linux adopts a new block
device interface blk-mq starting from kernel version 3.13. The
internal structure of blk-mq is shown in Fig. 3. In the new 10
framework, each 10 request is processed in two phases sepa-
rately. When an 10 request arrives at the kernel through a sys-
tem call, it is pushed onto a software staging queue which is
dedicated to the CPU core on which the working thread is run-
ning. The request stays in the software queue while the kernel
applies scheduling logics; then it’ s transmitted to a hardware
dispatch queue waiting for the hardware to be ready to process
it. To achieve high concurrency, a single storage device can be
configured with multiple dispatch queues to better utilize the
parallel processing capability of CPUs and in-band signaled in-
terrupts of devices. In fact, the hardware queues can be allocat-
ed as many as several thousands, a number determined by how
many virtual context a device can support. For example, a de-
vice supporting MSI-X can allocate 2048 queues for it can reg-
ister 2048 interrupts. This new design of the 10 subsystem pro-
motes a fast and localized 10request processing scheme, espe-
cially by reducing unnecessary remote memory accesses in an
NUMA environment.
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The blk - mq block device interface successfully separates
the software scheduling and the hardware message buffering
functionalities which used to share a single request queue. The
separation reduces synchronization and buffer congestion and
hence leads to a much improved 10 scalability.

2.3 Poll or Interrupt?

Despite that a redesign of 10 subsystem internal structure
fundamentally improves the 10 scalability, there remain other
system software overheads affecting IO performance. Most no-
ticeably, the overhead comes from interrupt handling and con-
text switch. In a typical OS setting, after an 10 request is sub-
mitted to the kernel waiting to be processed, the calling thread
returns or simply blocks for response. The completion of the re-
quest starts with a device interrupt notifying the CPU that the
data is ready. After the device driver picks up the interrupt
and finishes the handling procedure it will notify the 10 subsys-
tem which then will complete the remaining work and wake up
the suspended thread. This asynchronous style of 10 operation
saves valuable CPU time since the program waiting for re-
sponse can yield the CPU temporarily for other programs to
use. In theory, however, the benefit of asynchronous 10 only ex-
ists if the hardware latency is larger than the combined soft-
ware overhead. When the device latency is reduced to micro-
second level, the benefit will diminish.

Polling provides a lighter weight means for checking device
status than waiting for interrupt. To find out which is better
with high performance NVM, Yang et al. compared the
throughput and latency results using a simulated environment
[8]. The study shows that synchronous completion requires
shorter time and induces a better CPU utilization when that de-
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vice latency is as low as several microseconds. Another inter-
esting observation is, in the synchronous mode, a better hard-
ware performance can reduce the software cost, whereas there
is no such benefit for asynchronous 10. Furthermore, by study-
ing throughput scalability, based on the case of 512 byte ran-
dom reads, the study finds that the throughput of synchronous
IO scales linearly with increased number CPUs. In contrast,
asynchronous 10 can only achieve 60%—70% throughput of
the synchronous 10. Because asynchronous 10 is suitable for
processing long wait, when the system has a complex device
setup, it can be suggested that the 10 request be processed by
a mixed mode of synchronous and asynchronous 10, achieving
a load balance between CPU and the device.

2.4 NVM Express

NVM Express (NVMe) [9], [10] is a new software interface
specification for accessing NVM devices attached to the PCle
bus. A working group on NVMe was formed in 2007. Technical
work on the specification started in 2007 and the first release
was finished in 2011. NVMe was designed from the ground up
as an open device interface to exploit the low latency and paral-
lelism of the future NVM devices, leading to an increased ca-
pacity of data path between CPU and storage. As a key design
goal, the NVMe interface allows the processing power to fully
utilize the internal parallelism available in the NVM devices
and the bandwidth of the PCle bus, hence effectively improv-
ing the 10 performance. An example 10 subsystem supporting
NVMe is shown in Fig. 4.

NVMe can support up to 65,536 request queues, with re-
quest submission and completion stages allocating on different
sets of queues (SQ and CQ).Separating the two stages reduces
the likelihood of 1O congestion, an issue often raised when us-
ing a single request queue in dealing with a large number of 10
requests. The actual 10 operations over the NVMe interface in-
volve the software and the device exchanging commands and
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data on a dedicated memory mapped area in the host program’s
address space. Moreover, an NVMe device can support up to
2048 virtual contexts. With highly scalable multi-queue based
10 scheduling, the NVMe interface supports a high throughput
and concurrent data path between CPU and storage.

The ecology of NVMe-based systems is collaboratively built
by the device manufacturers, chipsets providers as well as soft-
ware venders. The first NVMe drives came from Samsung [11],
LSI [12], Kingston [13] and Intel [14]. Early operating systems
supported include Linux 3.3, Windows 8.1 and Windows Serv-
er 2012 R2. On chipsets, the major venders have already add-
ed NVMe support in their new product lines. To further pro-
mote software development using NVMe features, Intel an-
nounced the Storage Performance Development Kit (SPDK), a
development toolkit providing the user level and poll based 10
programming interface.

Performance studies on actual NVMe systems have recently
been carried out by a group of researchers. Xu et al. measured
and analyzed the performance differences of several database
systems using NVMe SSD and Serial Advanced Technology At-
tachment (SATA) SSD on real machines [15]. The experiment
results show that, compared to SATA SSD, the software over-
head of NVMe SSD is reduced from 25% to 7% meanwhile
4 KB read throughput is increased from 70k IOPS to 750k
IOPS. NVMe helps bring about 8 times performance gain in
the tested database applications. This study is a solid proof
that a redesigned device interface is necessary for exploiting
the potential of new storage hardware. The performance demon-
stration also assures the system designers that NVM storage is
ready to be a major investment for boosting overall service per-
formance.

3 File Systems for NVM

A file system provides a data persistence service over a
named space organized in directories. It strives to meet two
practical goals: to maintain a consistent view of the data and to
guarantee persisted data are reliably stored. In order to ensure
the reliability and consistency, the file system needs careful or-
ganization of data layout as well as correct implementation of
the operation semantics.

In a file system, stored objects are comprised of data and
metadata, both of which may be accessed and modified when a
single file operation is involved. The latency of accessing a
conventional storage device can be long and unstable, which is
a major concern of modern file system optimization. Tech-
niques such as grouping metadata based on accessing pattern
can improve data locality, leading to a better use of buffer
cache. For reliability and consistency purposes, journaling and
block level copy - on - write are typically employed to guard
against system crash and power outage. These techniques
themselves bring up additional operation overhead which may
contribute to severe performance degradation. When a file sys-
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tem is migrated to an NVM-based system, the change of stor-
age structure can incur a host of new issues meanwhile eclipse
the effect of existing optimizations. For example, fast NVMs
make data prefetching and caching no longer a key mechanism
for latency reduction. Moreover, the software overhead intro-
duced by prefetching and caching can be significant in the set-
ting of new systems.

New NVM storage exposes challenges as well as opportuni-
ties to modern file systems. New software structures and optimi-
zations have been proposed and evaluated in several experi-
mental systems. In this section we survey five state-of-the-art
NVM file systems, outlining the new techniques around key is-
sues developed in these systems.

3.1 File Operation Interface

Modern file systems usually offer two types of interfaces for
reading and writing a file, the standard read() and write() sys-
tem calls and then map the application programming interface
(API). Realizing these two interfaces is affected by which par-
ticular hardware interface the NVM device is stalled on. If the
device is installed on PCle bus through NVMe interface, the
legacy file system will function well as long the hardware inter-
face is supported. Moreover, any 10 system optimization
against NVMe will benefit the file system as well. In this set-
ting, data copying between the device and memory is neces-
sary to realize both the read/write and the mmap APIs. In con-
trast, if the NVM is attached to the system through the memory
bus, mmap would not involve extra copying, rendering faster
external data operations.

The Byte-Addressable Persistent File System (BPFS) [16] is
an NVM file system for the Windows operating system. Imple-
mented using Windows Driver Model, BPFS provides users
with the standard file operation interface. In the core, BPFS
maintains an independent physical space for the file system,
separated from the physical space of the user processes. Read
and write operations involve data copying between the two
physical spaces. Since the hardware is fast, buffer cache is no
longer needed and the reduced software complexity helps im-
prove the performance as a consequence. As an experimental
file system, BPFS does not support mmap.

The Storage Class Memory File System (SCMFS) [17], [18]
is an NVM file system developed for Linux, providing a com-
patible interface with common file systems in Linux. SCMFS le-
verages the processor’ s VMM features and simplifies the de-
sign of the file system to reduce the software overhead.

The Persistent Memory File System (PMFS) [19] is another
example file system that exploits the processor’ s paging and
memory ordering mechanisms to reduce the software overhead.
PMEFS provides both read/write APl and mmap interface.

Aerie [20] is more of a file system framework than a single
file system. It can be extended and customized based on partic-
ular application’ s requirements. As a framework, Aerie pro-
vides a flexible interface for the higher level software to work
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with. It can be used for implementinga POSIX compatible file
system as well as building a user level library allowing applica-
tions to access files without going through the OS kernel.

The Non-Volatile Memory Accelerated (NOVA) file system
[21] is log structured and designed for DRAM/NVM hybrid
memory systems. NOVA is designed with full account of the
device’ s byte addressability as well as the concurrency avail-
able in modern multicore systems. Implemented in the Linux
kernel, NOVA supports both standard file operations and
mmap APIs.

3.2 Internal Organizations and Management

Externally, files and directories are the main objects that a
file system manages. Internally, the data in a file system are ar-
ranged in a collection of inodes, data files and logs. On the stor-
age level, a data file can be laid out either in a sequence of ex-
tents, each of which being a consecutive run of blocks, or in a
sequence of indirectly linked blocks [15]. Some data structures
specific to file systems are crucial components for correctness
and reliability purposes. For example, to guarantee crash con-
sistency, a file system often uses journals to log uncommitted
changes. Another widely used structure is the copy-on-write
log tree, which provides a foundation for atomic updates of
large data blocks.

As mentioned in previous sections, NVM has changed the
cost ratio of software and hardware. As a result, the structures
and algorithms in the conventional file systems, which were op-
timized against slow storages, do not work well for the fast
NVM devices. To fully utilize the new hardware features,
changes must be applied in software, potentially modifying the
basic internal structures in the file systems. In the following,
we highlight the key techniques and strategies for improved
NVM usage introduced in the aforementioned file systems.

BPFS uses shadow paging to ensure reliable data update. In-
ternally, the inodes, the catalog files and the data files are all
stored in pages that are organized into a tree structure, as
shown in Fig. 4. Unlike standard shadow paging that uses page
level copy-on-write, the fine-grained access to NVM allows
BPFS to manipulate data on a subpage level, a technical im-
provement that supports in - place modification of small data
and partial copy-on-write, both of which can reduce the chance
of page copying. For sake of performance, BPFS retains certain
dynamic data structures in DRAM, including the storage man-
agement data structures and directory cache, to help speed up
metadata querying speed.

SCMFS leverages the existing virtual memory management
(VMM) mechanisms provided by the OS and the hardware to
simply the storage management of the new NVM file system.In
SCMFS, the metadata and the address mapping table are
stored in the physical address space, whereas the inodes, the
catalog files and the data files are all mapped into virtual ad-
dress space. In order to expedite the storage allocation and rec-
lamation, SCMFS pre-allocates plenty of null files so that when
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creating a new file it firstly looks for a suitable null file, and
when deleting files it only marks them as null files. When the
total size of null files is too large, garbage collection is trig-
gered to recycle the storage of null files.

PMFS has the entire file system in the kernel address space.
Under this arrangement, programs use the Direct Access
(DAX) mechanism of Linux to access files, bypassing the buf-
fer cache and incurring at most one copying between user
space and kernel space for every piece of data. Moreover, zero-
copy access is made possible to the memory mapped files
whose user addresses are directly mapped to their in - kernel
storage. Internally, PMFS organizes file storage based on B -
tree structure, with 4KB, 2MB and 1GB as units of blocks.
PMFS uses logs for basic consistency purpose.

Aerie decouples normal read and write operations from the
management of the file system to reduce software overhead of
directory lookups, metadata querying, synchronization opera-
tions and so on. Thus, different types of services can be as-
signed to different components which communicate and cooper-
ate through Remote Procedure Call (RPC) as well as distribut-
ed lock service. As shown in Fig. 5, Aerie’ s distributed ser-
vice architecture includes three major components: the storage
manager in the OS kernel, the Trusted FS Service (TFS) and
the FS Library (libFS). The storage manager is responsible for
core functions and services that require privileged operations,
such as allocating storage space for users, mapping the address
space of the files, and modifying access permissions. TFS pro-
vides users with metadata modification, concurrency control
and other critical services without special hardware support.
TFS runs in an independent process and accepts RPC requests
from user programs. LibFS provides ordinary file read-write op-
erations and read - only operations of metadata. When privi-
leged functions are required, LibFS will send RPC requests to
the TFS. Aerie adopts an extent based multi-layerstructure for
storage management. Seeking in a file is done by mapping the
offset to a certain extent using a multi-level index. Moreover,
user program scanning modifies an extent directly without go-
ing through the TFS.

NOVA augments the basic design of a log structured file sys-
tem with features optimized against NVM. Based on the obser-
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ATFigure 5. The decoupled architecture of the Aerie file system.
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vation that logging is fast with NVM vyet search is slow, NOVA
builds an index in DRAM in addition to the logs in NVM to ac-
celerate search operations. The traditional log structured file
system suffers from the complexity of garbage collecting re-
leased logs into contiguous free regions. In NVM, random ac-
cess is cheap so supplying a large contiguous region for log-
ging is no longer necessary. In NOVA, logs are stored as
linked lists so they don’t need to be allocated in contiguous
memory. Logs are chained up under individual inodes, which
allows for high concurrency during access and recovery.

3.3 Consistency and Atomicity Maintenance
Journaling and shadow paging are techniques commonly

used in file systems to achieve crash consistency. However,

when implementing these techniques in an NVM system follow-
ing the traditional way, performance issues may arise.

1) Issues with journaling. When journaling is enabled in a file
system, write operations are amplified since every update re-
quires writing into the storage twice, one to add an entry to
the log, and the other to commit the change in the file. In
terms of performance, the sequential characteristic of log ap-
pending is very favorable in the case of disk storage, but the
new NVMs support fast random access, which significantly
dampens the performance benefit of sequential logging.

2) Issues with shadow paging. With copy-on-write, an update
to a logical page by the user program needs to be written to
another free page, and only when changes are committed,
the reference pointing to different methods for the old page
will be replaced to ensure the atomicity of the modification.
Since file systems usually organize internal storage in tree-
like structures, a page getting modified implies its parent
must be modified too. This may lead to a chain effect that
an update on a single page triggers a series of page copying,
causing severe write amplification.

Compared to traditional storage, NVM is fast and suitable
for random access. The following outlines the solutions to the
above issues, which take account of the hardware advantage.

BPFS proposes a technique called short-circuit shadow pag-
ing for updating persistent data. The new shadow paging
scheme consists of three methods, in-place updates, in-place
appends, and partial copy-on-write (Fig. 6). In-place updates
can be applied for writes of 8 bytes or less, using hardware sup-
ported primitives. In-place appends refers to writing to the free
area immediately beyond the file”’s end point. Since all the da-
ta beyond the file size is ignored, in-place writing to these loca-
tions is safe and once the writing is complete the file size is up-
dated atomically. Partial copy-on-write allows atomic updates
spanning multiple pages. The page copying only propagates to
a point in which a single write suffices to commit the entire
change.

In PMFS [19], based on the comparison study over the costs
of different consistency techniques, the authors found that jour-
naling at 64 byte granularity was most efficient for metadata
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ATFigure 6. Three approaches to updating a file in BPFS: (a) in-place
updates, (b) in-place appends, and (c) partial copy-on-write.

updates while it was less desirable than copy-on-write for large
updates. Based on this observation, PMFS follows a hybrid
strategy for consistency where in - place updates and fine -
grained logging are used for metadata updates, and copy-on-
write for file data updates. The metadata log update could be
implemented by two different methods, namely undo logging
and redo logging. In redo logging, the new data is firstly logged
before committing to the file system. In undo logging, the old
data is firstly logged before the new data is written in-place. In
case of a failure, the system can be rolled back using the old
data in the undo log. On the one hand, undo logging is costly
for writes since a write barrier is required for every log entry in
undo logging whereas only one write barrier is needed for a
transaction in redo logging. On the other hand, redo logging is
costly for reads and more difficult to implement since all the
reads within a redo logging transaction have to search the redo
log for the latest copy before reading from the file system.
PMFS uses undo logging for metadata journaling.

Aerie needs to maintain the consistency of data updates in
its particular distributed framework. If each metadata update
requires one round RPC request from user program to the TFS,
it’s bound to hurt the service scalability. To solve this prob-
lem, Aerie applies an optimization that the client buffers the re-
quests before periodically sending them to the TFS. In TFS,
Aerie uses redo logging to realize atomic metadata updates.

NOVA modifies small metadata atomically in place. For sin-
gle inode updates, NOVA relies on logs to record the changes.
Modifications across multiple inodes resort to lightweight jour-
naling to guarantee atomicity.

3.4 Hardware Primitives for Persistent Memory

Modern processors maintain consistency of memory opera-
tions by following certain a memory model. Without affecting
the correctness of the program, memory requests could be de-
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livered out of order after they are scheduled and buffered in
the memory controller. Even the ordering enforcing instruc-
tions only guarantee the memory operations are properly or-
dered in the processor, disregarding in what order the data up-
dates actually reach the memory. Unlike memory consistency,
a file system is strict about when the data updates are safely
stored. As previously mentioned, the file system consistency is
realized by techniques such as journaling and copy-on-write,
mostly implemented in software. For NVM, particularly byte -
addressable NVM, pure software approaches to achieve consis-
tency incur large overhead. To reduce the cost, new hardware
primitives have been proposed and exploited.

BPFS proposes a write barrier instruction. Using the barri-
ers, a program execution breaks down into a sequence of ep-
ochs. The order of persistent memory operations across epochs
is strictly maintained. In addition to barriers, a file system
needs atomic data updates to help crash recovery. Traditional
file systems could verify atomicity by computing checksums.
Leveraging hardware features, BPFS proposes a new atomic
write primitive for small data updates. It is shown in a related
research that such a light weight atomic operation requires
merely 300 nanojoules reserved in the capacitor. With the new
primitive, all data updates less than 8 bytes could be done in
place.

PMFS uses atomic write instructions for modifying data of 8
bytes, 16 bytes and 64 bytes. The following scenarios explain
when to apply the atomic instructions: 1) when reading a file,
update the access time in the inode with the 8 byte atomic
write instruction; 2) when appending to a file, use the 16 byte
atomic write to update the size and access time in the inode;
and 3) if Restricted Transactional Memory (RTM) [22] is avail-
able, use the RTM transactions for atomic updates within a
cache line.

Aerie relies on the atomic instructions available in the x86
instruction set to realize three basic atomic primitives: 1) wl-
flush, which is implemented with the x86 clflush instruction,
writes back the entire cache line; 2) bflush, which relies on the
x86 mfence instruction, writes back the entire cache in proces-
sor to the storage, and 3) fence, which also uses the mfence in-
struction, enforces orderly writebacks. Based on these hard-
ware primitives, Aerie manages a redo log for metadata up-
dates.

However, it is worth to note that both clflush and mfence
have limitations regarding memory writes to NVM. Clflush only
flushes the cache line to the memory controller; it is left un-
known whether the write eventually reaches the memory.
Mfence only guarantees write orders are consistently recorded
across CPUs; it has no constraints on the order of arrivals to
the memory.

NOVA enforces write ordering upon memory operations by
using a set of newly developed x86 instructions that have been
proposed to tackle the above issues. These instructions include
clflushopt (a more efficient version of clflush), clwb (cache line
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write back without invalidation) and PCOMMIT (commit writes
to NVM).

4 Conclusions

In recent years, the research on NVM and its software sup-
port has been a hot topic in computer systems area. The key ad-
vantage of NVM is its capacity to simultaneously achieve high
density, low latency and low energy consumption. Hence it can
potentially solve the energy scalability issues of large scale
computer systems. The current NVM platform technologies,
from the device interface to the software support, are not yet
fully developed, leaving numerous challenges to be solved.
From the software perspective, the most challenging issues
arise in several areas, including 10 optimization, memory man-
agement, file system as well as programming abstraction. To
tackle these problems, researchers have explored novel ideas
which involve restructuring the system software internals. In
this article, we sampled a number of representative results in
these areas and believe that new software techniques will
emerge in response to the hardware’ s changing landscape in
the future.
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