
D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

An Optimization ofAn Optimization of
HTTP/HTTP/22 for Mobilefor Mobile
ApplicationsApplications
DONG Zhenjiang1, SHUANG Kai2, CAI Yanan2,
WANG Wei1, and LI Congbing1

(1. Cloud Computing & IT Research Institute, ZTE Corporation, Nanjing
210012, China;
2. State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China)

In recent years, Hyper Text Transfer Protocol (HTTP) spreads
quickly and steadily in the usage of mobile applications as a
common web protocol, so that the mobile applications can al⁃
so benefit from HTTP/2, which is the new version of HTTP
based on SPDY developed by Google to speed up the Internet
transmission speed. HTTP/2 enables a more efficient use of
network resources and a reduced perception of latency by in⁃
troducing header field compression and allowing multiple con⁃
current exchanges on the same connection. However, what
HTTP/2 focuses on is visiting websites through a browser,
and mobile applications are not considered much. In this pa⁃
per, firstly, mobile applications are classified based on the da⁃
ta flow characteristics. Based on the classification, we propose
an optimization of HTTP/2 for mobile applications, called
HTTP/2 ⁃Advance, which uses multiple Transmission Control
Protocol (TCP) connections to multiplex HTTP requests and
responses. Then we build a tiny system which simulates actu⁃
al requests and responses between mobile applications and
servers. We figure out the best choice of the number of multi⁃
ple TCP connections for mobile applications, and compare the
performance of HTTP, HTTP/2 and HTTP/2⁃Advance in both
simulated and in⁃situ experiments in our system.

HTTP/2; HTTP optimization; multiple connection; header com⁃
pression

Abstract

Keywords

DOI: 10.3969/j. issn. 16735188. 2016. S1. 006
http://www.cnki.net/kcms/detail/34.1294.TN.20161228.1105.002.html, published online December 28, 2016

1 Introduction
n recent years, with the growing popularity of smart
phones and the rapid prosperous development of mo⁃
bile Internet, mobile applications present an explo⁃
sive growth. According to the data provided by

Google Play Store, there were more than 370,000 applications
available for the Android pads and phones in 2011, and the
number rose sharply to 1.5 million in 2014 [1]. Meanwhile, be⁃
cause of an increasing trend on binding mobile applications
with rendering engine and a widely acceptance on emerging
frameworks like Hybrid [2], Hyper Text Transfer Protocol
(HTTP) spreads quickly and steadily in the usage of mobile ap⁃
plications as a common web protocol. However, since the Inter⁃
net has changed dramatically since 1990 when HTTP was first
published, HTTP cannot hold the needs of users gradually.

The optimization of HTTP is imminent. HTTP 1.0 serially
builds on Transmission Control Protocol (TCP) connection for
each embedded objectives. When requesting a web page with a
browser, the TCP 3⁃way/4⁃way handshake and slow start signif⁃
icantly increase the latency. To optimize this issue, HTTP1.1
uses multiple, persistent TCP connections to“keep ⁃ alive”.
However, it is still a serial prototype in essence and the multi⁃
ple connections strategy may cause more bandwidth usage.
HTTP/2 [3], [4] is the second major version of HTTP to make
web faster. It is based on SPDY [5], which is developed by
Google. According to W3Techs, 1.2% of all websites support
HTTP/2 in August 2015 to speed up the Internet transmission
speed [6].

HTTP/2 enables a more efficient use of network resources
and a reduced perception of latency by introducing header
field compression and allowing multiple concurrent exchanges
on the same connection [3]. This means less competition with
other flows and longer ⁃ lived connections, which in turn leads
to better utilization of available network capacity. As a result,
the web browser loads pages more quickly. However, for the
mobile, it is much different. The browser is just a very small
part of the mobile applications that use HTTP. Besides, the un⁃
predictable network circumstance and data flow characteristics
brought about by different applications have great impact on
the Internet transmission speed. For example, applications like
UC browser have intermittent network connections with di⁃
verse connection time and data flow throughout the day de⁃
pending on the usage patterns, while other applications such as
Sina Weibo have persistent network connections to transfer the
signaling and user requested resources with light data flow. In
this paper, we proposed an optimization of HTTP/2 for the mo⁃
bile applications, which enables a more efficient way to use
HTTP/2 in mobile application scenarios. The main contribu⁃
tions of this paper are: 1) Mobile applications are classified
based on the data flow characteristics; 2) an optimization of
HTTP/2 for mobile applications, called HTTP/2 ⁃ Advance, is
proposed; 3) a tiny system is built to simulate the actual re⁃This work was supported in part by ZTE Industry⁃Academia⁃Research

Cooperation Funds.

I

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 35December 2016 Vol.14 No. S1

1

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

quests and responses between applications and servers, and 4)
the performance of this optimization is tested and analyzed in
different categories of applications and different network condi⁃
tions in both simulated and in⁃situ experiments.

2 Background and Related Works

2.1 Background
HTTP/2 allows the interleaving of request and response mes⁃

sage exchanges on the same connection associated with its own
stream. The streams are largely independent of each other; in
this way, a blocked or stalled request or response does not pre⁃
vent any progress on other streams. It can reuse the TCP con⁃
nections to reduce the number of TCP connections and the la⁃
tency.

An HTTP header has some same information for a single ses⁃
sion, for instance, host and user ⁃ agent. HTTP/2 provides the
header compression strategy to reduce the unnecessary redun⁃
dant information, and then decrease the TCP bytes and applica⁃
tion layer latency. It is preferable to use no more than two lev⁃
els of subheadings (primary and secondary), and the levels
should be carefully differentiated. Ideally we try not to go be⁃
low a second level subheading. It should be noted that there is
no period after the final number.
2.2 Related Works

Some works have been done in PC since SPDY (which
HTTP/2 is based on) was published. The performance of SPDY
and HTTP in a variety of settings in publicly available software
was tested in [7]. Web page load time under SPDY and HTTP
was systematically compared in [8]. A comprehensive evalua⁃
tion of SPDY’s performance was experimented in [9] to find
the potential benefits of SPDY. However, all of them focus on
the PC side, and are limited by the existing SPDY deployments
provided by some famous web service providers.

Some works have been done in the mobile side. J. Khalid et
al. [10] proposed two adopting mechanisms to dynamically ad⁃
just the overall performance. However, this solution did not
evaluate them in the mobile circumstance. J. Erman et al. [11]
provided a detailed analysis of the performance of both HTTP
and SPDY, and of their interaction with various layers as well.
However, only the web pages on mobile browsers in cellular
networks have been analyzed. G. Mineki et al. [12] proposed a
SPDY accelerator that could considerably accelerate the web
access speed by combining the SPDY protocol and cache sys⁃
tem, but it only evaluates the performance of web pages, too.
So far, none of the current works have examined the perfor⁃
mance of SPDY on mobile applications.

In this paper, an optimization of HTTP/2 for mobile applica⁃
tions is proposed, which is called HTTP/2⁃Advance. Both the
simulated experiment and in⁃situ experiment are also conduct⁃
ed to compare the performance of HTTP, HTTP/2 and HTTP/2⁃

Advance.

3 Application Taxonomy
The taxonomy is based on the data flow characteristics of an

application during its usage time. According to the Android op⁃
erating system, only one app can be shown to the user on the
screen, while other applications are only allowed to run in
background. The reason we consider app usage time rather
than user behavior of multiple applications is that every factor
of the user behavior towards multiple applications, such as lo⁃
cation, time, user needs, and certain context can be divided in⁃
to the data flow characteristic of application and the network
condition during the app usage time. The data flow characteris⁃
tic will be introduced in this section, and the network condi⁃
tion influence will be discussed in next section.

Mobile applications are divided into four categories in this
paper, and for each category, one Chinese popular app is se⁃
lected as the test object. The categories are shown in Table 1.

The data flow characteristics of these applications are shown
as follows.
3.1 Intermittent Connection with Random Data Flow

The application has intermittent connections with diverse
connection time, and data flow throughout the day is difficult
to predict since it largely depends on the usage pattern. The
mobile browser UC Browser is one representative that occupies
41.7% of the Chinese mobile browser market [17].
3.2 Intermittent Connection with Light Data Flow

The application uses intermittent connections to download
the resources with diverse connection time. Data flow is gener⁃
ated only when the application is downloading resources. After
downloading, the application hardly consumes network resourc⁃
es. One example is Southern Weekly, an online application
made by a traditional media company.
3.3 Persistent Connection with Heavy Data Flow

Xunlei Kankan is a popular online video application. Its da⁃
ta flow is heavy, and may occupy the independent channel re⁃
sources of persistent connections for a long time.
3.4 Persistent Connection with Light Data Flow

The application has persistent network connections to trans⁃
fer constantly switching of state signaling and download user

Application taxonomy
Intermittent connection with random data flow
Intermittent connection with light data flow
Persistent connection with heavy data flow
Persistent connection with light data flow

Popular application
UC Browser [13]

Southern Weekly [14]
Xunlei Kankan [15]
Sina Weibo [16]

▼Table 1. Application taxonomy based on data flow characteristic

Research Paper

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

ZTE COMMUNICATIONSZTE COMMUNICATIONS36 December 2016 Vol.14 No. S1

2

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

requested resources, but the data flow is light. Sina Weibo, the
most popular social network app in China, is such an applica⁃
tion.

4 Optimization of HTTP/2
HTTP/2 allows interleaving of request and response messag⁃

es exchange on the same connection associated with its own
stream. The client sends an HTTP request on a new stream us⁃
ing a previously unused stream identifier. The server sends an
HTTP response on the same stream as the request [6]. HTTP/2
uses multiplexing connection, and since using a single connec⁃
tion, it does not monopolize network resources. This means
less competition with other flows and longer⁃lived connections,
which in turn leads to better utilization of available network ca⁃
pacity. As a result, the web browser will load pages more
quickly.

However, what this strategy focuses on is visiting websites
through a PC browser, and mobile applications are not consid⁃
ered. According to Android operating system, only one applica⁃
tion can be shown to the user on the screen, so it is reasonable
to assume that there is only one application being able to ac⁃
cess to network at the same time. Different from the PC scenar⁃
io, the network resources can be monopolized by one mobile
application. In this case, only using a single TCP connection to
interleave HTTP requests and responses is not the best choice,
because it cannot make full use of network capacity. Therefore,
we propose an optimization strategy of HTTP/2 called HTTP/2⁃
Advance, which uses multiple TCP connections to multiplex
HTTP requests and responses. That means that the web ele⁃
ments are loaded in parallel over several TCP connections.
The multiplexing strategy (Fig. 1) is as follows:
1) The multiple TCP connections between the client and the

server are declared as Channel 1, Channel 2, … , Channel
N, and these channels are indiscriminate with each other
from the HTTP request⁃response stream perspective.

2) Each HTTP request ⁃ response stream is allocated a unique
stream ID and put into the request distribution center,
which is an orderly queue in essence, by the generation

time of each request.
3) The request distribution center distributes the HTTP request⁃

response streams to the multiple TCP connection channels
based on the round⁃robin strategy. Meanwhile, a flow⁃con⁃
trol [3] scheme ensures that the streams on the same con⁃
nection do not destructively interfere with each other so
that blocked streams are prevented.
The multiple TCP connections provide a parallel data trans⁃

mission channel, but simultaneously bring more bandwidth
consumption and more HTTP/2 multiplexing connection pro⁃
cessing time when using our optimization. This is not a“the
more, the better”scenario and there should be a tradeoff for
each application category. If the application just has light data
flow with intermittent connections to transfer, the benefit
brought from multiple TCP connections may not cover the pro⁃
cess time for that. On the other hand, if the data flow is heavy,
the multiple TCP connections benefit the transmission speed
more. To figure out how many multiple TCP connections are
best for each application category, some experiments have
been done, which will be introduced in the next section.

5 Experiments and Evaluation

5.1 Experimental Setup
Since HTTP/2 is a new protocol, almost none of the mobile

applications have been built with a HTTP/2 protocol stack, as
well as the application servers in China. To simulate actual re⁃
quests and responses between the applications and servers, we
build a tiny system. This system is made up of an Android cli⁃
ent with a simulated application, a server, and a network dam⁃
age meter [18] between the client and the server. The simulat⁃
ed application can generate and send both simulated HTTP
and HTTP/2 requests. The server is used to generate and send
simulated responses for both HTTP and HTTP/2 requests in
each protocol stack. The number of multiplexing connections
are alternative between the client and the server. The network
damage meter controls the network condition, such like the la⁃
tency and the packet loss rate. The structure of the system is
shown in Fig. 2. The Android phone used as the client is Nex⁃

▲Figure 1. The multiplexing strategy of HTTP⁃Advance. The HTTP re⁃
quest ⁃ response streams are put into the request distribution center by
the sequence of requesting time, and distributed to the multiple channels
based on round⁃robin.

HTTP: Hyper Text Transfer Protocol
TCP: Transmission Control Protocol

▲Figure 2. The simulation system architecture. The client is connected
to the server via a network damage meter that controls the network con⁃
dition.

Stream 4 Stream 3 Stream 2 Stream 1•••

Channel 1 (Flow control)

Channel 2 (Flow control)

Channel 3 (Flow control)
•
•
•

Multiple TCP connections

Request distribution center (Queue)

Simulated APP
(Generate and send
simulated requests)

Android operating
system

Control networkHTTP/2
HTTP

Generate and
send simulated

responses
HTTP/2
HTTP

ServerAndroid client Network damage meter

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 37December 2016 Vol.14 No. S1

3

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

us 5 with a 2.3 GHz CPU, 2G RAM, and Android 4.4 OS. The
server is a Dell T5810 computer with 3.5 GHz CPU and 32G
RAM.

For rigorous controlled trials, simulated user requests based
on the actual requests are generated and sent from the Android
client to the server many times to compare the performance of
HTTP, HTTP/2 and HTTP/2 ⁃Advance statistically. Simulated
responses based on the actual responses are generated by the
server to respond with the client requests. At the same time,
network condition is controlled by the parameter configuration
on the network damage meter. In order to produce authentic
simulated requests and responses:

Firstly, for each application category, application requests
are classified into several behavior categories based on our us⁃
er research, and the packets of actual requests and responses
of each behavior category are captured by the Shark [19]. The
Shark then generates .pacp files (Fig. 3). The pcap packet data
stores the captured packet, and pcap packet header stores the
time stamp and length of the captured packet. By analyzing the
pcap files, we get the time stamp and length from the pcap
packet header, and requests and responses information from
pcap packet data.

Secondly, the behavior configuration files are generated by
analyzing the pcap files of each behavior category. By parsing
the pacp file, each realistic request⁃response is analyzed to get
the data of index, request time, dependent resources, GET/
POST, URL, header length and body length. Based on these da⁃
ta, the simulated application and server can simulate the actu⁃
al requests and responses.

Thirdly, the behavior configuration files are grouped to gen⁃
erate the group file. The grouping is based on our user re⁃
search of user habits when using the application.

Lastly, the simulated application and server send requests
and responses based on the group file and the behavior configu⁃
ration files to guarantee the similarity of the traffic characteris⁃

tic between the simulated packets and the actual ones.
With the example of Sina Weibo, requests are firstly classi⁃

fied into five behavior categories, that is, login, refresh, read,
post, and repost/comment, and actual requests and responses
packets of each behavior are then captured by the Shark. Sec⁃
ondly, the behavior configuration files are generated as login
file, refresh file, read file, post file, and repost/comment file.
Thirdly, based on the research of user habits when using Sina
Weibo, the group file is generated by grouping the behavior
configuration files. Lastly, the simulated packets based on the
group and configuration files are sent by the client and the
server.

The network condition is parameterized by the latency and
the packet loss rate. The latency and packet loss rate parame⁃
ters based on the mobile access network like 2G, 3G, 4G and
Wi⁃Fi/802.11 are considered to simulate different network con⁃
ditions [20]. They are parameterized as (0 ms, 0%), (100 ms,
0%), (300 ms, 0%), (0 ms, 2%), (100 ms, 2%), and (300 ms,
2%). At the same time, the application layer latency Lapp layer

in (1), application layer throughput TPapp layer in (2) and (3),
TCP total bytes B

TCP
, and the total number of TCP connections#TCP conn are recorded to evaluate the performance of HTTP,

HTTP/2 and HTTP/2⁃Advance in different scenarios. The cal⁃
culation methods of the comparison standards are as follows:

Lapp layer = tlast 200 ok - t1st GET/POST (1)
TPapp layer =BTCP payload /Lapp layer (2)
BTCP payload =BTCP -BTCP header -Bconn control (3)
Since HTTP and HTTP/2 are application layer protocols, the

application layer latency Lapp layer and the application layer
throughput TPapp layer are the most important indicators to me⁃
asure the optimization proportion. The application layer laten⁃

cy is a main standard of user experience, and the applica⁃
tion layer throughput reflects network efficiency and us⁃
age. The application layer latency Lapp layer equals to the
HTTP session duration, from the first sent GET/POST re⁃
quest timestamp t1st GET/POST to the last received 200 OK r⁃
esponse timestamp tlast 200 ok . The application layer
throughput TPapp layer equals to the TCP payload bytes
BTCP payload divided by the application layer latency
Lapp layer . The TCP payload bytes BTCP payload as in (3),
equals to the TCP total bytes BTCP decrement the TCP
header bytes BTCP header and the TCP connection establis⁃
hment/close control bytes Bconn control (such as SYN+ACK).
5.2 Data Flow Characteristics of Application

Categories
As described in Section 3, applications are divided in⁃

to four categories based on the data flow characteristic.
Before the test, data flow characteristics of each applica⁃▲Figure 3. Pcap file format. Pcap packet data stores the captured packet, and the

pcap packet header stores the time stamp and length of the captured packet.

… Sets of a packet header and
packet data follow

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
magic minormajor gmt local time stamptime stamp max length data linktype

Pcap file header (Global header)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Timeval (time stamp) packetlengthcapturelength

Pcap packet header (Packet header)

The size is obtained from the packet header

Pcap file header
(Global header)

Pcap packet header
(Packet header)

Pcap packet data
(Packet data)

24 bytes 16 bytes Variable length#

Pcap header

Research Paper

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

ZTE COMMUNICATIONSZTE COMMUNICATIONS38 December 2016 Vol.14 No. S1

4

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

tion category are measured to have more in⁃depth understand⁃
ing of the application category. The characteristics are shown
in Fig. 4, from which we can find that, UC Browser has inter⁃
mittent network connections with diverse connection time, and
the data flow is random. Southern Weekly uses intermittent
connections to download with diverse connection time and
light data flow. Xunlei Kankan has persistent connection with
heavy data flow all the time, and Sina Weibo has persistent
connection like Xunlei Kankan, but the data flow is light.

We also find that most of these applications in China use
HTTP1.0 (short connection) to request the resources. For every
HTTP request ⁃ response, the applications serially established
multiple TCP connections to improve the resources loading
time. Therefore, in our later simulation and experiment,
HTTP1.0 (short connection) will be used to evaluate the perfor⁃
mance of HTTP, HTTP/2 and HTTP/2⁃Advance.
5.3 Simulation Results

5.3.1 Number of Connections
The performance of HTTP/2 ⁃Advance, using multiple TCP

connections to multiplex HTTP requests and responses, is test⁃
ed and analyzed to figure out how many multiple TCP connec⁃
tions are best for each application category. Application layer
latency are measured in single connection, three multiple TCP
connections, and five multiple TCP connec⁃
tions (Fig. 5). UC Browser and Southern Week⁃
ly donnot always have a packet to transfer, and
the packets are not big since the web page opti⁃
mization for mobile phone displaying. Sina We⁃
ibo has constantly state switch signaling and
heartbeat packet, but the packet is also small.
UC Browser, Sina Weibo and Southern Week⁃
ly perform best at three multiple TCP connec⁃
tions. Xunlei Kankan has very different data
flow characteristics from others. Because its
data flow is always heavy and occupying the in⁃
dependent channel resources for a long time, it
is not strange that the latency is drastically re⁃
duced when three multiple TCP connections is

changed into five. In a total, the HTTP/2 ⁃Advance enables a
more efficient way to use HTTP/2 in mobile applications, and
multiplexing three multiple TCP connections is feasible in
most cases.
5.3.2 Header Compression Strategy

The header compression strategy can reduce redundant in⁃
formation in the HTTP header and further the TCP bytes and
application layer latency. The application layer latency is mea⁃
sured in two compression strategies that are Network⁃Friendly
[21] and Gzip [22]. As shown in Fig. 6, the difference of head⁃
er compression strategies has little influence on the applica⁃
tion layer latency. The HTTP header occupies a major part of
the request packet, but in the response packet, the HTTP head⁃
er is usually much smaller than HTTP body content. Therefore,
in a pair of request ⁃ response, the header size of the whole
HTTP packets is so small that different header compression
strategies have little influence on latency. We finally choose
Gzip for our later evaluation.
5.3.3 Evaluation of HTTP/2⁃Advance

The performance of HTTP, HTTP/2 and HTTP/2 ⁃Advance
in different network condition are tested and compared with
three TCP connections as 3 and Gzip header compression. The
results are shown in Figs. 7 and 8.

▲Figure 4. Data flow characteristics of application categories. Different application categories have different data flow characteristics, which
influences the performance.

▲Figure 5. The number of multiple TCP connections for each category. More connections
increase connection bandwidth and processing time, and a tradeoff is necessary when
using HTTP/2⁃Advance.

TCP: Transmission Control Protocol

1500

1000

500

0 1521219160 152310
Time (s)

UC Browser

Dat
afl

ow
(by

te)

1500

1000

500

0
Time (s)

Dat
afl

ow
(by

te)

425366305244182121601

Southern Weekly
2000

1000
500

0
Time (s)

Dat
afl

ow
(by

te)

9160310

1500

Xunlei Kankan
1500

1000

500

041
Time (s)

Dat
afl

ow
(by

te)

13010069

Sina Weibo

600

5
Multiple TCP Connections

Ap
pla

yer
late

ncy
(ms

) 250
200
150
100
50
0 31

UC Weibo Southern

90

5
Multiple TCP Connections

Ap
pla

yer
late

ncy
(ms

)

31

80
70
60
50
40
30
20
10
0

Xunlei

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 39December 2016 Vol.14 No. S1

5

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

HTTP/2 ⁃Advance performs better than HTTP/2, especially
when the network condition is good. The average HTTP/2⁃Ad⁃
vance optimization proportion of HTTP on application layer la⁃
tency is 41.67%. The network resources can be better used by
multiple TCP connections when the network condition is good,
however, these multiple TCP connections will be in conflict
while the network condition becomes bad. Even though the ad⁃
vantage of HTTP/2⁃Advance decreases, HTTP/2⁃Advance still
preforms better.

The application layer latency increases when the latency or
the packet loss rate increases no matter HTTP,
HTTP/2 or HTTP/2⁃Advance is used. The net⁃
work latency directly affects the data transmis⁃
sion latency. A larger latency will increase the
data transferring time and then increase the ap⁃
plication layer request completion time with
other conditions remaining unchanged. If laten⁃
cy is a fixed number, a higher packet loss rate
stands a higher occurrence of incomplete data,
and this relation also exists in retransmission
scenario that will cause the increase of the ap⁃
plication layer latency.

The application layer throughput declines
when latency increases. As TPapp layer and
BTCP payload hardly change when using HTTP,
HTTP/2 or HTTP/2⁃Advance, it is obvious that
the application layer throughput only depends
on the application layer latency, and is inverse⁃
ly proportional to the application layer latency
in theory (Fig. 8).

The main reason of the reduced application
layer latency using HTTP/2 ⁃ Advance is that
HTTP/2 ⁃ Advance uses multiplexing connec⁃
tion, which reduces the total number of TCP
connections and the cost of TCP connection es⁃
tablishment/close 3 ⁃ way/4 ⁃ way handshakes.
During the test, the number of total TCP con⁃
nections and the TCP bytes are recorded (Ta⁃
bles 2 and 3). The average reducing bytes of

Southern Weekly is 800.44 bytes per connec⁃
tion, and that of UC Browser is 663.92 bytes
per connection. Due to the multiplexing con⁃
nection strategy, the HTTP packet can reuse
the previous established TCP connections. As
we all know, the establishment of a TCP con⁃
nection needs three ⁃ way handshake, and the
close of the connection needs four ⁃ way hand⁃
shake. Theoretically, the connection establish⁃
ment/close control bytes Bconn control that is r⁃
equired by TCP establishment and close hand⁃
shakes are in (4), where n means the total num⁃
ber of TCP connections #TCP conn .

The actual data shown in Tables 2 and 3 are consistent with
the magnitude of the theoretical data. Due to the unpredictable
factors such as retransmission and HTTP/2 header compres⁃
sion strategy, a little more bytes reduction than the theoretical

HTTP: Hyper Text Transfer Protocol

HTTP: Hyper Text Transfer Protocol

▲Figure 8. HTTP/2 and HTTP/2⁃Advance are both optimize the app layer throughput, and
the app layer throughput is inversely proportional to the app layer latency in theory.

▲Figure 7. HTTP/2⁃Advance preforms better than HTTP/2 and HTTP according to
the application layer latency.

Bconn control =∑
i = 1

n æ

è
çç

ö

ø
÷÷∑

j = 1

3
establi shi, j +∑

k = 1

4
closei,k ≈

()74 + 74 + 66 + 66 + 66 + 60 + 60 *n =
= 466n()n = #TCPconn (4)

HTTP HTTP/2 HTTP/2⁃Advance

800

300

Ap
pla

yer
late

ncy
(ms

)

600
400
200

0 1000

Sina Weibo
Application layer latency
packet loss rate = 0%

Network latency (ms)

200

2

Ap
pla

yer
late

ncy
(ms

)

Packet loss rate (%)
0

150
100
50
0

Southern Weekly
Application layer latency

latency = 0 ms

HTTP HTTP/2 HTTP/2⁃Advance

HTTP HTTP/2 HTTP/2⁃Advance

25000

300App
laye

rth
rou

ghp
ut(

bps
)

0 1000
Network latency (ms)

20000
15000
10000
5000

Sina Weibo
Application layer throughput

packet loss rate = 0%

HTTP HTTP/2 HTTP/2⁃Advance

40000

300App
laye

rth
rou

ghp
ut(

bps
)

0 1000
Network latency (ms)

30000
20000
10000

Sina Weibo
Application layer throughput

packet loss rate = 2%

Research Paper

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

ZTE COMMUNICATIONSZTE COMMUNICATIONS40 December 2016 Vol.14 No. S1

NF: Network⁃Friendly

▲Figure 6. Application layer latency in different compression strategy. Difference of
compression strategy has little influence on app layer latency.

600

300
Network latency (ms)

Ap
pla

yer
late

ncy
(ms

)

1000

400
200

0

Sina Weibo

NF Gzip

500

300
Network latency (ms)

Ap
pla

yer
late

ncy
(ms

)
10000

NF Gzip

400
300
200
100

Southern Weekly

6

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

data is understandable. Furthermore, besides Southern Weekly
and UC Browser, the other application categories also show the
same relation.

In a total, HTTP/2⁃Advance performs better
than HTTP/2, especially when the network
condition is good. HTTP/2⁃Advance optimizes
the application layer latency and throughput
and it does reduce the TCP connections and
TCP bytes thanks to the multiplexing connec⁃
tion and the header compression strategy.
5.4 InSitu Experiment

A tiny system is built to test the perfor⁃
mance of HTTP ⁃ Advance in actual situation
(Fig. 9). An Android middleware is developed
for changing HTTP stack to HTTP/2⁃Advance
stack on the client side. The middleware runs
“under”the applications and allows the real
applications to send HTTP/2⁃Advance packet
indirectly. Placed in between the actual server
and client, a protocol conversion gateway is
used to convert the protocol HTTP and HTTP/
2⁃Advance. The server is an actual application
server that responds requests from the client.
The tests of Sina Weibo and UC Browser were
done by 20 persons at different time and differ⁃
ent locations. The test results are shown in
Fig. 10 and Table 4, from which we can find

that the in⁃situ experiment has the same con⁃
clusion with the simulated experiment. HTTP/
2⁃Advance performs better than HTTP/2 when
using three multiple TCP connections to multi⁃
plex HTTP requests and responses, and the av⁃
erage application layer latency has minute dif⁃
ference between Gzip and Network ⁃ Friendly
header compression strategies. When the mul⁃
tiple TCP connections is three and the Gzip
header compression is usedi, the average
HTTP/2 ⁃ Advance optimization proportion of
Sina Weibo is 25.86% and that of UC Browser
is 48.39%.

6 Conclusions
In this paper, popular mobile applications

are classified by the data flow characteristics.
Then, an optimization of HTTP/2 for mobile
applications, called HTTP/2 ⁃Advance, is pro⁃
posed for the scenario of mobile applications.
Different applications are also simulated and
tested in several network circumstances pa⁃
rameterized by the latency and the packet loss
rate. By changing the header compressions

strategies and the network conditions, the comparisons of
HTTP, HTTP/2 and HTTP/2 ⁃ Advance in different scenarios

HTTP: Hyper Text Transfer Protocol

NF: Network⁃Friendly TCP: Transmission Control Protocol

▼Table 2. TCP bytes and the total number of TCP connections—Southern Weekly

HTTP: Hyper Text Transfer Protocol TCP: Transmission Control Protocol

Packet loss
rate is 0%

Packet loss
rate is 2%

Latency
Protocol

BTCP (bytes)
#TCP conn

Protocol
BTCP (bytes)

#TCP conn

0 ms
HTTP
186,650
120

HTTP
224,105
121

HTTP/2⁃
Advance
115,712

3
HTTP/2⁃
Advance
144,908

3

100 ms
HTTP
167,230
105

HTTP
215,676
106

HTTP/2⁃
Advance
100,034

4
HTTP/2⁃
Advance
107,392

3

300 ms
HTTP
269,855
146

HTTP
280,634
146

HTTP/2⁃
Advance
138,575

3
HTTP/2⁃
Advance
152,482

3

▼Table 3. TCP bytes and the total number of TCP connections—UC Browser

HTTP: Hyper Text Transfer Protocol TCP: Transmission Control Protocol

Packet loss
rate is 0%

Packet loss
rate is 2%

Latency
Protocol

BTCP (bytes)
#TCP conn

Protocol
BTCP (bytes)

#TCP conn

0 ms
HTTP
260,353
186

HTTP
293,155
187

HTTP/2⁃
Advance
165,797

3
HTTP/2⁃
Advance
181,261

3

100 ms
HTTP
322,514
220

HTTP
365,463
219

HTTP/2⁃
Advance
194,722

4
HTTP/2⁃
Advance
194,722

4

300 ms
HTTP
292,336
192

HTTP
328,536
192

HTTP/2⁃
Advance
172,530

4
HTTP/2⁃
Advance
181,378

3

▲Figure 10. The in⁃situ experiment on the number of multiple TCP connections influence
and header compression influence. The in⁃situ result has the same conclusion with the
simulated experiment.

▲Figure 9. The actual experiment circumstance. The client is connected to the server via
a conversion gateway that converts HTTP/2 and HTTP.

Apps

Middleware on
Android

Android operating
system

HTTP

HTTP/2

Protocol conversionHTTP
HTTP/2

HTTP
HTTP/2

Android client Actual serverConversion gateway

60

5Ave
rag

eA
pp

lay
erl

ate
ncy

(ms
)

Multiple TCP connections
31

50
40
30
20
10
0

Sina Weibo
The number of multiple TCP connections 40

NFAve
rag

eA
pp

lay
erl

ate
ncy

(ms
)

Gzip

38363432302826242220
Header compression strategy

Sina Weibo
Header compression strategy

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 41December 2016 Vol.14 No. S1

7

D:\EMAG\2016-12-54/VOL12\RP1.VFT——8PPS/P

are tested and analyzed. The results indicate that the HTTP/2⁃
Advance enables a more efficient way than HTTP/2 in mobile
applications, and it performs better than HTTP/2, especially
when the network condition is good. Overall, multiplexing
three TCP connections is feasible for most mobile applications.

▼Table 4. Application layer latency in in⁃situ experiment

HTTP: Hyper Text Transfer Protocol TCP: Transmission Control Protocol

Average app layer latency (ms)

Average optimization proportion

Protocols

HTTP
HTTP/2⁃Advance

Mobile applications
Sina Weibo
57.6983
42.7775
25.86%

UC Browser
55.37302
28.57672
48.39%

References
[1] Google Play. (2016). Google Play for Android Applications [Online]. Available:

http://play.google.com
[2] Hybird [Online]. Available: http://www.hybird.org
[3] M. Belshe, M. Thomson, and R. Peon. (2015, May). Hypertext Transfer Protocol

Version 2 (HTTP/2) [Online]. Available: http://tools.ietf.org/html/rfc7540
[4] M. Thomson (ed.), M. Belshe, and R. Peon. (2015, Feb. 11). Hypertext Transfer

Protocol version 2 ⁃ draft⁃ietf⁃httpbis⁃http2⁃16 [Online]. Available: https://tools.
ietf.org/html/draft⁃ietf⁃httpbis⁃http2⁃16

[5] M. Belshe, and R. Peon. (2013, Nov.). SPDY protocol—Draft 3.1 [Online]. Avail⁃
able: http://www. chromium. org/spdy/spdyprotocol/spdy⁃protocol⁃draft3⁃1

[6] W3Techs. (2015, Jul.). Usage of HTTP/2 for websites [Online]. Available: http://
w3techs.com/technologies/details/ce⁃http2/all/all

[7] J. Padhye and H. F. Nielsen,“A comparison of SPDY and HTTP performance,”
Microsoft Technical Report MSR⁃TR⁃2012⁃102, 2012.

[8] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,“How
speedy is SPDY,”in Proc. 11th USENIX Symposium on Networked Systems De⁃
sign and Implementation (NSDI’14), Seattle, USA, 2014.

[9] Y. Elkhatib, G. Tyson, and M. Welzl.“Can SPDY really make the web faster?”
in IFIP Networking Conference, Trondheim, Norway, Jun. 2014. doi: 10.1109/IF⁃
IPNetworking.2014.6857089.

[10] J. Khalid, S. Agarwal, A. Akella, and J. Padhye. (2016). Improving the perfor⁃
mance of SPDY for mobile devices [Online]. Available: https://www.microsoft.
com/en⁃us/research/wp⁃content/uploads/2016/02/sagarwal⁃hotmobile15⁃poster.
pdf

[11] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,“Towards a
SPDY’ier mobile web?”in Proc. Ninth ACM Conference on Emerging Network⁃
ing Experiments and Technologies, Santa Barbara, USA, Dec. 2013, pp. 303-
314. doi: 10.1145/2535372.2535399.

[12] G. Mineki, S. Uemura, and T. Hasegawa,“SPDY accelerator for improving web
access speed,”in 15th International Conference on Advanced Communication
Technology (ICACT), Pyeong Chang, Korea (South), Jan. 2013, pp. 540-544.

[13] Google Play. (2016). UC Browser—Google Play for Android Applications [On⁃
line]. Available: https://play.google.com/store/apps/details?id=com.UCMobile

[14] Google Play. (2016). Nanfang Weekend ⁃Google Play for Android Applications
[Online]. Available: https://play.google.com/store/apps/details?id=net.coollet.in⁃

fzmreader
[15] Google Play. (2016). Xunlei Kankan—Google Play for An⁃

droid Applications [Online]. Available: play.google.com/
store/applications/developer?id=迅雷看看&hl=zh_TW

[16] Google Play. (2016). Sina Weibo—Google Play for Android
Applications [Online]. Available: play.google.com/store/ap⁃
plications/details?id=com.sina.weibo

[17] Xinhua. (2014, May). Data of phone browsers in Q1 2014
[Online]. Available: http://www.bj.xinhuanet.com/hbpd/
hbrj/rjy/2014⁃05/16/c_1110729487.htm

[18] WANem. (2016). The Wide Area Network emulator [On⁃
line]. Available: http://wanem.sourceforge.net

[19] Google Play. (2016). Shark ⁃ Google Play for Android Applications [Online].
Available: http://play.google.com/store/applications/details?id=lv.n3o.shark

[20] I. Grigorik,“Making the web faster with HTTP 2.0,”Communications of the
ACM, vol. 56, no.12, pp. 42-49, Dec. 2013. doi: 10.1145/2534706.2534721.

[21] W. Tarreau, A. Jeffries, and A. de Croy. (2012, Mar.). Proposal for a Network⁃
Friendly HTTP Upgrade [Online]. Available: https://www.ietf.org/archive/id/
draft⁃tarreau⁃httpbis⁃network⁃friendly⁃00.txt

[22] Gzip. (2016). The gizp home page [Online]. Available: http://www.gzip.org
Manuscript received: 2015⁃07⁃12

DONG Zhenjiang (dong.zhenjiang@zte.com.cn) received his MS degree in telecom⁃
munication from Harbin Institute of Technology, China in 1996. He is vice presi⁃
dent of the Cloud Computing & IT Research Institute of ZTE Corporation. His main
research areas are cloud computing, big data, new media, and mobile Internet tech⁃
nologies.
SHUANG Kai (shuangk@bupt.edu.cn) received his PhD from State Key Laboratory
of Networking & Switching Technology, Beijing University of Posts & Telecommuni⁃
cations (BUPT) in 2006. He is currently an associate professor with the BUPT. His
research interests include cloud computing and the mobile Internet.
CAI Yanan (522018144@qq.com) is a master candidate of Beijing University of
Posts and Telecommunications, China. Her research direction is the mobile Internet.
WANG Wei (wang.wei8@zte.com.cn) received her MS degree from Nanjing Univer⁃
sity of Aeronautics and Astronautics, China. She is an engineer and project manager
in the field of mobile Internet at the Cloud Computing and IT Research Institute of
ZTE Corporation. Her research interests include new mobile Internet services and
applications, PaaS, terminal application development, and other technologies. She
has authored five academic papers.
LI Congbing (li.congbing@zte.com.cn) received his MS degree from Nanjing Univer⁃
sity of Science and Technology, China. He is currently a technical researcher in the
field of mobile Internet and AI at the Service Research Institute of ZTE Corporation.
His research interests include WebRTC, HTML5, open platform, and robot AI. He
is responsible for researching mobile Internet IM services and mobile robot naviga⁃
tion.

BiographiesBiographies

Research Paper

An Optimization of HTTP/2 for Mobile Applications
DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing

ZTE COMMUNICATIONSZTE COMMUNICATIONS42 December 2016 Vol.14 No. S1

8

