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( Abstract

Batch processing mode is widely used in the training process
of human motion recognition. After training, the motion classi-
fier usually remains invariable. However, if the classifier is to
be expanded, all historical data must be gathered for retrain-
ing. This consumes a huge amount of storage space, and the
new training process will be more complicated. In this paper,
we use an incremental learning method to model the motion
classifier. A weighted decision tree is proposed to help illus-
trate the process, and the probability sampling method is also
used. The results show that with continuous learning, the mo-
tion classifier is more precise. The average classification pre-
cision for the weighted decision tree was 88.43% in a typical
test. Incremental learning consumes much less time than the
batch processing mode when the input training data comes
continuously.

( Keywords
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1 Introduction

uman motion recognition involves recognizing
what a person is doing and is an important aspect
of context awareness [1]. It can be used for di-
verse purposes, such as ubiquitous computing,
sports training, virtual reality, and health care. A promising ap-
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plication is remote monitoring of elderly people who live alone
and need support. An emergency situation arising from a fall
could be detected and responded to quickly [2]. Recently,
sports bracelets that detect a person’ s motion have become
very popular. Such bracelets can calculate how many calories
a person consumes in a day and give reminders about healthy
lifestyle. Human motion recognition has also been introduced
into personal navigation to help increase the location accuracy
[31-[5]-

Methods of motion recognition and classification include
computer vision and inertial sensor data processing. Early re-
search on motion recognition has focused on vision-based sys-
tems with one or more cameras [6], [7]. A camera system is
practical when motion is confined to a limited area, such as an
office or house, and the environment is well-lit. However, when
a person is moving from place to place, a camera system is
much less convenient because it cannot move in the same way
a person does. In terms of privacy, a vision-based system puts
a degree of psychological pressure on a person and causes
them to act unnaturally. As well as vision-based solutions, sen-
sor-based solutions are also extensively used to study human
motion [8]-[11]. Most previous research on motion recognition
has assumed that inertial sensors are fixed on the human body
in a known orientation [12], [13]. In a well - cited work [14],
multiple accelerometer sensors worn on different parts of the
human body detect common activities, such as sitting, stand-
ing, walking or running. In [15], a small low - power sensor
board is mounted at a single location on the body. Then, a hy-
brid approach is taken to recognize activities. This approach
combines the boosting algorithm, which discriminatively se-
lects useful features, and HMMs, which capture the temporal
regularities and smoothness of activities. However, the assump-
tion made in laboratory experiments usually cannot be made in
a regular mobile environment. In some other research, a phone
has been used as the sensor to collect motion data for offline
analysis [16], [17]. In [18], a phone-centric sensing system is
described. The position of the mobile phone on the human
body is assumed to be fixed—e.g., in a pocket, clipped to a
belt, or on a lanyard—and an inference model is trained ac-
cording to the phone position. Compared to image-processing-
based motion recognition, inertial-sensor-based motion recogni-
tion is cheaper, less limited by the environment, and involves
smaller devices. Such sensors have already been integrated in-
to smartphones, which are developing rapidly. Therefore, iner-
tial - sensor-based motion recognition may be more popular in
the future.

To recognize human motion, a classifier should be modeled.
In the training process, an algorithm can be divided into batch-
processing mode and incremental-learning mode. In batch-pro-
cessing mode, all the history training data is used to model the
motion classifier. When the new training data is available and
the classifier needs to be updated, all the history data must be
gathered again to retrain the classifier. Therefore, all the train-
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ing data must be preserved. This means that a huge amount of
storage space is needed. As the amount of input training data
increases, the training process becomes more complex and
takes longer. Most current research on vision- and inertial -sen-
sor-based human motion recognition focuses on this processing
mode. Incremental learning only uses new incoming training
data to update the classifier model; therefore, updating is more
efficient, history data does not need to be stored, and much
free space is spared. In [19], the authors propose pattern recog-
nition based on neural networks and learning new chunks of
patterns while keeping the previous ones intact. In [20], the au-
thors suggest Learn ++, an approach inspired by Adaboost.
This approach is based on neural - network - based ensemble
classifiers working on a digital optics database. In [21], a
Gaussian mixture model and resource allocation for learning
were applied in the context of a dormitory to study the habits of
students. In [22], the authors propose an approach to incremen-
tally learning the relationship between motion primitives in or-
der to form longer behaviors. In general, when the training data
set is huge and data is continuously coming in, incremental
learning mode is a better choice.

The main goal of our research is to provide a complete solu-
tion for human motion recognition based on incremental learn-
ing and smartphone inertial sensors. We illustrate the flow of
motion pattern recognition and typical motion feature sets. We
also show how to apply incremental learning to human motion
recognition in detail. At the same time, we develop a weighted
decision tree for the incremental learning framework.

The remainder of this paper is organized as follows. In sec-
tion 2, we describe the general pattern-recognition framework,
date preprocessing, and feature extraction. In section 3, we dis-
cuss the incremental learning method used for human motion
recognition. In section 4, we discuss the experimental results.
In section 5, we make concluding remarks.

2 Motion Recognition

2.1 Pattern-Recognition Framework

Pattern recognition is a subject dealing with object classifi-
cation and recognition. It encompasses face identification,
character recognition, and voice recognition. It also encompass-
es human motion recognition. A general pattern - recognition
system framework is shown in Fig. 1. The components of this
framework are defined in Table 1.

Because raw sensor data is just a series of waves, it cannot
be directly used for pattern recognition. Therefore, pattern fea-
tures are extracted in order to describe the patterns. A pattern
may have many features; however, more features do not mean
better performance. If different patterns cannot discriminate
when the chosen features are applied, the designed classifier
performs badly. Feature selection (feature compression) is an
important part of pattern recognition. With a well-selected fea-
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A Figure 1. Pattern-recognition system framework.

VTable 1. Component definition of pattern recognition system

Component Definition

Sensors Obtain raw sensor data
Feature extraction Extraction of features from raw sensor data
Feature selection Selection of best feature subset
Classifier design Modeling of classifier using training data

Evaluation Evaluation of the performance of classifier model

ture subset, the generated classifier has a higher classification
rate. Calculation complexity is also greatly reduced. The classi-
fier is designed after the feature-selection process is complet-
ed. There are two methods for training a classifier: supervised
learning (also called supervised clustering) and unsupervised
learning. The main difference between these methods is that
the labels of instances in supervised learning are known to the
learner. This is not the case for unsupervised learning. The per-
formance of the classifier is evaluated using test instances. The
components shown in Table 1 are not independent. To improve
overall performance, one component may feed back to the pre-
vious component, and the previous component is designed
again.

In this paper, we use the general pattern-recognition frame-
work to recognize human motion. We mainly focus on the clas-
sifier design component; the feature extraction and feature se-
lection components are merged into one procedure.

2.2 Motion Definitions

Common human motions include keeping still, walking, run-
ning, climbing stairs, using an elevator, driving, and taking a
bus. The possible motion set differs in different scenarios. In
this paper, we limit the scenario to an office. The motions relat-
ed to this scenario are shown in Table 2.

2.3 Data Collection and Preprocessing
In this paper, a three-axis linear smartphone accelerometer

V Table 2. Motion state definition

Motion state Definition
M1 Still
M2 Walking
M3 Climbing up stairs
M4 Climbing down stairs
M5 Running
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is used to collect the raw motion data of a person. In fact, in-
stead of the total acceleration, the linear acceleration infers the
motions of a human. The collection process is controlled by an
application we developed. Through a simple graphic user inter-
face, we can start or stop collecting. The sensor sampling rate
is 50 Hz, so we obtain 50 raw samples per second.

Because there are some noises in the raw sensor data, a five-
stage moving window is used to eliminate them. Fig. 2 shows
the output of the moving window is smoother than the raw lin-
ear accelerometer data.

2.4 Feature Extraction

Features from the linear acceleration are used for motion
recognition. In most of the previous work involving inertial sen-
sors for motion recognition, the sensors are mounted on the hu-
man body in a known orientation and position. However, this is
not practical in real life because of the flexible use of smart-
phones. To avoid the orientation problem, instead of directly
using the features from x, y, z axes, the vertical and horizontal
components of the linear acceleration are extracted by project-
ing the linear acceleration vector to the gravity vector. Some
smartphones have the gravity sensor imbedded directly. With
others, the gravity can be obtained using the following method.
First, the smartphone is kept still for a few seconds. Then, the
averages of the three axis readings are calculated as the ap-
proximation of the gravity vector [23].

Suppose @=(@,,a,,a.) is the linear acceleration vector and

g=(g,.2,-2.) is the gravity vector. Then the vertical component

> =

. . _[aXg), .
of linear acceleration is a,= (m]g and the horizontal co-
mponent of the linear acceleration is a,=a-a,.

Both time and frequency domain features are extracted to

construct the feature vector. In the time domain, mean, vari-
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A Figure 2. Accelerometer reading before and after pre-processing.
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ance, skewness, kurtosis, and so on are the features used. The
formulas for these features are shown in Table 3. In the fre-
quency domain, an FFT algorithm is applied, and first domi-
nant frequency, second dominant frequency, and the amplitude
of the first and second dominant frequencies are the features
used. All the features used are shown in Table 4. The instance
window for extracting features is 2 s, and a 50% overlapping
window is used to obtain feature vectors more efficiently. This
has been demonstrated to be useful [24].

3 Incremental Learning

Recently, incremental learning has been popular in data
mining and has attracted the attention of both academia and in-
dustry. Many of today’ s data-intensive computing applications
require an algorithm that is capable of incrementally learning
from large-scale dynamic data. An incremental learning algo-
rithm learns new knowledge continuously over time and up-

VTable 3. Statistical feature definitions

Feature Definition
1 N
Mean m= N;x‘
1 N
Variance a’= WZ( e m)2
i=1
R
Skewness skew = e Z(x -m)’
N
Kurtosis kur= = Z(xz m)*
i=1

VTable 4. Human motion feature definitions

Feature Definition

linacecM_mean Mean of module of linear acceleration

linaccM_var Variance of module of linear acceleration
linaceM_skew Skewness of module of linear acceleration
linaceM_kur Kurtosis of module of linear acceleration
linaccV_mean Mean of vertical component of linear acceleration
linaccV_var Variance of vertical component of linear acceleration
linaccV_skew Skewness of vertical component of linear acceleration
linaccV_kur Kurtosis of vertical component of linear acceleration
linaccH_mean Mean of horizontal component of linear acceleration
linaccH_var Variance of horizontal component of linear acceleration
linaccH_skew Skewness of horizontal component of linear acceleration

linaccH_kur Kurtosis of horizontal component of linear acceleration

firstfreq The first dominant frequency
firstpeak The amplitude of the first dominant frequency
secondfreq The second dominant frequency
secondpeak The amplitude of the second dominant frequency
energy The mean energy of linear acceleration
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dates the knowledge system to benefit future learning and deci-
sion-making.

In the human motion recognition domain, most researchers
have used batch processing methods to recognize human mo-
tion. A classifier that uses batch processing keeps an invari-
able knowledge system after the learning. Usually, the classifi-
er cannot learn new knowledge directly in order to expand it-
self unless all historical training data is gathered together with
the new training data. Compared with incremental learning,
batch mode learning, which updates itself, requires much stor-
age space for historical training data, and the new training pro-
cess is slower.

3.1 Framework for Incremental Learning

Inspired by the classification performance in [25], we use a
similar incremental learning framework for human motion rec-
ognition. Fig. 3 gives an overview of the algorithm. The learner
is continuously presented with the training data flows over

Distribution
function

Training data
chunk

Classifier

A Figure 3. Incremental learning overview.

time. The previous knowledge in this case includes the hypoth-
esis, which was developed at time ¢—1, and the distribution
function P,_, is applied to the data set D,_, . For the first block
of the received training data, the initial distribution function
P, is given a uniform distribution because nothing has been
learned yet. As data blocks continually come in, a series of dis-
tribution functions is developed to represent the learning capa-
bility of the data in each block. Based on distribution function
P, , a hypothesis %, , which is a human motion classifier, can be
developed. In this classifier, the decision boundary is automati-
cally forced to focus more on difficult-to-learn regions. When
P, and h, have been obtained, the system uses its knowledge to
facilitate learning from the next block of training data D, . ; .

Algorithm 1 can be divided into two parts. First, a mapping
function estimates the initial distribution function of the cur-
rent training data using the last input training data set and its
corresponding distribution function. Second, a classifier using
training data with probability distribution function is devel-
oped.

Algorithm 1. Incremental learning algorithm

Input: Sequence of data chunks D,, (t=1,2,3,..), each data
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chunk includes some instances. An instance is composed of a
feature vector and a label.

Learning process:

1. For the first data set, suppose there are m samples,
D, ={x,y}), ©=1,2,....m,) , where #; is the feature vector of the i
-th sample and ; is the label of the ith sample. The initial dis-
tribution function P, is a uniform distribution.

2. Train a classifier h, using the training data set D, and its
corresponding probability distribution function P,

3. Fort=2, use the last data set D,_, and distribution func-
tion P,_, to estimate the distribution function f’t of the new trai-
ning data set D,

4. Apply the last classifier i, to the new data set D, , calcu-
late the pseudo errore, :

e= 2 PO

y .

Fth, )y

i

(x.y,)€D,

5.8et B,=e/(n—1( —e)), n is the number of all different
labels.

6. Update the distribution function of D,, the misclassified
sample will get a higher probability or weight:

Pr(j): ]3/(]) B/, if‘htfl(xj):yj,

., I otherwise

where Z, is a normalization constant so that P, is a distribution
and Y P(j)=1 .
j=1

7. Model the classifier , using the training set D,,, and its
corresponding distribution function P,

8. When new training data set comes, go back to 3 and re-
peat the procedure.

Output: Afier T classifiers have been trained, we obtain T ba-
sic classifiers and their corresponding weights. The final out-
put is obtained by the combination of these. Here, log(l/8) is
the weight of each basic classifier:

()= arg max > log(L/B,)

t:hy(x)=y

3.2 Mapping Function Design

The mapping function is an important component in the in-
cremental learning framework. It connects past experience to
the newly received data and adapts such knowledge to the data
sets received in future. Nonlinear regression models can be
used as well as mapping functions. Here, we consider support
vector regression (SVR) [26]. Suppose y=f(x) is the estimated
initial weight for instance x :

Sfx)=<s,x>+b

where s and b are the slope and intercept of the linear estima-
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tion function f(¥), respectively. To obtain an accurate estima-
tion f(¥), a convex optimization problem can be extracted:

(s,,b,) = arg min[leyi —<s, x> —b,IIZ) _

s,eRbeR\ =1

Alternative strategies can be used as well. For example, oth-
er types of regression model, such as multilayer perceptron or
regression tree, can be integrated into the incremental learning
framework according the application requirements.

3.3 Hypothesis Based on Probability - Distributed
Training Data

In the conventional classifier design process, all instances
in the training data set have the same weight. This means that
instances that are difficult to classify are treated the same as
those that are not. However, instances that are difficult to clas-
sify should be weighted more heavily so that they will be more
easily recognized in the newly designed classifier.

Here, we introduce two methods for classifier modeling,
both of which use the probability distributed training data.
With the first method, the probability is used as the weight of
the instance in the calculation of the decision boundary. We il-
lustrate this method in the proposed weighted decision-tree al-
gorithm. With the second method, the probability distribution
function is used as the sampling probability. All training in-
stances are given a sampling probability and sampled into the
real training set. The higher the instance’s probability, the eas-
ier it is added to the real training set.

3.3.1 Weighted Decision Tree

Decision tree is a classic algorithm used in pattern recogni-
tion and machine learning. It uses the information entropy gain
to split training data, and it constructs a tree to represent the
classifier. The information entropy of a tree node in the deci-
sion-tree algorithm is given by:

1(t)= —iP(a)ilt)logzP(a)ilt) ,

where ¢ is the current node, and P(@/lf) is the probability of
the class @; in node ¢. In a conventional decision tree, it is
Nwl/Nl , in which N, is the number of instances belonging to
class @; , and NV, is the total number of instances in node ¢ .

When node ¢ is split, maximum entropy gain criterion is
used. The formula is:

Nt
1) - 10,

t t

t,

N

Al(t)=1(t) -

where 1, is the left child node, IV, is the number of the instanc-
es in the left child node, ¢, is the right child node, and N, is
the number of instances in the right child node. In the conven-
tional decision tree, all the instance have the same weight, i.e.,

/N, .
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In this paper, we propose a weighted decision tree in which
each training instance is given a different weight instead of
1I/N, (the original decision tree is a special case of the weight-
ed decision tree). Thus, the heavier the weight of an instance,
the bigger the information entropy of its class. This forces the
decision boundary to focus on the more heavily weighted in-
stances, which are difficult to learn. Thus, in the next incoming
data block, the instance that is difficult to learn is weighted
more heavily, and the final classifier will recognize it more eas-
ily.

In the information entropy formula, P(@lt) is the sum of the
weights of the instances in class ®;. In the split formula, the
factor 1(t) is the sum of the weights of instances in the left
child node. The factor 1(t,) is the sum of the weights of in-
stances in the right child node. Thus, the instance that is diffi-
cult to learn will be weighted more heavily, and the instance
that is easy to learn weighted more lightly.

3.3.2 Sampling Probability Function

With the sampling probability function method, all training
data is sampled into the real training set according to their
probability. The instance which is hard to learn will have a
higher probability to be sampled into the real training set. How-
ever, low probability instance will have a lower probability to
be chosen into the final training set. That means there may ex-
ist several duplicates of the hard instance in the real training
set, and easy instance may not exist in the final training set.
More basic classifier category can be contained in this frame-
work.

4 Experiments and Evaluation

The device used in our experiments is a Google Nexus 5.
This smartphone has a built-in tri-axial MPU 6515 accelerome-
ter that records the user’ s raw motion data. The Android sys-
tem uses a filtering algorithm to extract the linear accelerome-
ter and gravity accelerometer. Experimental data was collected
from two males. One was 1.85 m tall and weighed 70 kg. The
other was 1.75 m tall and weighed 65 kg. Both males stood
still, walked, ran, and climbed up and down stairs in and
around our office building. The smartphone was held in the
hand with the phone screen facing upwards. All sensor data
was stored and processed offline.

4.1 Classification Precision Test

To determine the performance of incremental learning, the
data was split into many blocks. In our test, there were 250 in-
stances in a block; however, it is not essential to have the same
number of instances in each block. The data blocks were input
into the incremental-learning framework to simulate the contin-
uous learning process. The two important parts of the incremen-
tal learning process are mapping function design and motion
classifier modeling based on probability - distributed training
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data. An artificial neural network was 1.00

used for the mapping function because 10

such a network is well integrated into the

MATLAB toolbox. Weighted decision tree - 0951 - 0957

and sampling probability methods were 2 2 2

used for classifier modeling. At the same £ 090 2 090

time, batch processing method using an £ E
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Fig. 4. Incremental learning using three 54— BANN \ BANN

kinds of hypothesis strategy—weighted 0.75 0 20 20 0.75 0 0 0 20

decision tree (WDT), decision tree with
probability sampling (PDT), and artificial
neural network with probability sampling
(PANN) —results in a higher classifica-

Number of basic classifiers (user 1)

BANN: batch processing method using artificial neural network
PANN: artificial neural network with probability sampling

Number of basic classifiers (user 2)

PDT: decision tree with probability sampling
WDT: weighted decision tree

tion rate with continuous learning. For
both user 1 and user 2 probability sam-
pling, PANN performs better than PDT. When WDT is used
for user 1, classification precision is only slightly higher than
that of PDT when the number of basic classifiers is large
enough. However, when WDT is applied to user 2, it performs
better than both PDT and PANN, both of which use probability
sampling. The increasing curves show that the incremental
learning algorithm learns the new knowledge continuously and
benefits future decision making. The classification rate of the
batch processing method using artificial neural network
(BANN) also increases when there is more training data. Both
incremental learning and batch learning tend to be stable when
there is enough training data. For example, PANN for user 2
needs be completed about ten times to be stable in this scenar-
i0. Because batch processing uses the training data sufficiently
each time, it has a higher classification precision than incre-
mental learning. Incremental learning using some strategy per-
forms almost as well as batch processing. For user 1, the classi-
fication precision of PANN is slightly less than that of BANN
(Fig. 4).

Fig. 5 shows how the classification of each motion changes
for incremental learning. Take the incremental learning pro-
cess of user 1 with WTD for example.

Because still and run have different feature spaces than oth-
er motions, they can be easily recognized. However, according
to the smartphone inertial sensors, the person may appear to be
doing similar motions when going downstairs, upstairs or walk-
ing. These three motions belong to classes of motions that are
difficult to learn in this scenario. With continuous learning, the
former basic classifier delivers its learned knowledge to the
next classifier and forces the decision boundary to focus on the
three hard-to-learn regions. Therefore, the hard-to-learn mo-
tions will have higher classification precision after learning.
The confusion matrix after incremental learning is shown in
Table 5. The average of the motion classification precision is
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A Figure 4. Classification precision of incremental learning and batch learning.
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AFigure 5. Classification precision of each motion state.

88.43%, which is high enough for many applications.

4.2 Computational Complexity Test

Although batch processing may be more precise than incre-
mental learning, a huge amount of storage space and more com-
plex computation are required. Incremental learning does not
require historical training data to be stored. The computational
complexity is shown in Fig. 6. The more complex the computa-

VTable 5. Motion classification confusion matrix

Motion  Downstairs Upstairs Walking  Still  Running Precision
Downstairs 115 13 17 2 0 80.60%
Upstairs 7 160 24 0 0 83.77%
Walking 21 19 140 0 0 77.78%

Still 0 0 0 226 0 100%
Running 0 0 0 0 202 100%
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Time consumption (s)
Time consumption (s)

ta continually arrives, this ratio contin-
ues to increase.

5 Conclusion

In this paper, we have used the incre-
mental learning method to recognize hu-
man motion. First, a mapping function
was used to deliver learned knowledge
to incoming data. Then, a basic classifi-
er is modeled according to the training
data with distribution. A weighted deci-
sion tree was proposed to illustrate hy-
pothesis construction, and a sampling

Number of basic classifiers (user 1)

BANN: batch processing method using artificial neural network
PANN: artificial neural network with probability sampling

Number of basic classifiers (user 2)

PDT: decision tree with probability sampling e . ..
WDT: weighted decision tree the same classification precision as

probability method was also employed.
With continuous incoming data, the in-
cremental learning method almost has

batch processing method. However, the

AFigure 6. Time consumption of incremental learning and batch processing mode.

tion is, the more time the process requires. Therefore, the
amount of time needed to complete the process reflects compu-
tational complexity. As training data is continuously input, the
training process time is recorded for both incremental learning
and batch processing modes (Fig. 6).

Regardless of which hypothesis which strategy used, the
time required for incremental learning remains approximately
constant, and training data is continually input. However, the
amount of time needed for batch mode learning is linear to the
amount of training data. With incremental learning only the
new incoming data needs to be disposed. No historical training
data needs to be stored or used in the new basic classifier train-
ing process, and the time to complete the process only needs to
be approximately constant. Batch processing requires histori-
cal data to be stored and used to train the new classifier. Each
time new training data arrives, the overall amount of training
data increases linearly. Therefore, the time required in batch
processing mode increases linearly at the same time. The aver-
age time consumption for both users is shown in Table 6. The
time needed in batch processing mode BANN is several times
that in incremental learning mode for both users. Because the
time needed in batch processing mode increases linearly as da-

VTable 6. Average time consumption using different learning methods

WDT PDT PANN BANN
User 1 0.889 s 0422 s 0.613s 4414 s
User 2 0.658 s 0.305 s 0.620 s 5.692 s

BANN: batch processing method using artificial neural network
PANN: artificial neural network with probability sampling
PDT: decision tree with probability sampling
WDT: weighted decision tree
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incremental learning method has lower
computational complexity and is much
faster in the training phase. Considering the tradeoff between
classification precision and training time, incremental learning
is better than batch processing when there is huge amount of
input data.
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