
D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

SeSoa: Security Enhancement System with OnlineSeSoa: Security Enhancement System with Online
Authentication for Android APKAuthentication for Android APK
DONG Zhenjiang1, WANG Wei1, LI Hui2, ZHANG Yateng2, ZHANG Hongrui2, and ZHAO Hanyu2

(1.Cloud Computing and IT Research Institute, ZTE Corporation, Nanjing 210012, China;
2.Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

Android OS provides such security mechanisms as application signature, privilege limit and sandbox to protect the security of op⁃
erational system. However, these methods are unable to protect the applications of Android against anti⁃reverse engineering and
the codes of such applications face the risk of being obtained or modified, which are always the first step for further attacks. In
this paper, a security enhancement system with online authentication (SeSoa) for Android APK is proposed, in which the code of
Android application package (APK) can be automatically encrypted. The encrypted code is loaded and run in the Android system
after being successfully decrypted. Compared with the exiting software protecting systems, SeSoa uses online authentication mecha⁃
nism to ensure the improvementof the APK security and good balance between security and usability.

software protection; anti⁃reverse; Android; authentication
Keywords

DOI: 10.3969/j. issn. 1673􀆼5188. 2016. S0. 005
http://www.cnki.net/kcms/detail/34.1294.TN.20160622.1830.002.html, published online June 22, 2016

This work was supported by National Natural Science Foundation of China
(61370195) and ZTE Industry⁃Academia⁃Research Cooperation Funds.

B
1 Introduction

ecause of its true openness, Android [1] has be⁃
come one of the most popular mobile platforms in
the world since its appearance in the market a few
years ago. Naturally, the number of available appli⁃

cations is increasing rapidly and now over 1,800,000 Android
applications can be chosen by the Android users according to
the statistical result of Google Play [2]. However, the open
source code of Android and a huge number of applications
pose a vital security challenge for the Android system. More
and more attackers aim to its flaws, not only the flaws of the
OS itself, but also the flaws of the applications, which are hard
for the developers of Android system to fix.

Among many security threats of Android system, the An⁃
droid applications’source codes face the risk of being decom⁃
piled and may be acquired by illegal organizations through re⁃
verse engineering techniques. This threat may result in that
the program is slightly modified, re⁃packaged and released in
the form of new applications; even worse, attackers may tamper
with the code, mix malware to obtain the user’s sensitive data,
steal his bank account numbers and passwords stored on the
phones, or to increase the charges by triggering some pay⁃need⁃

ed operations. It is difficult for the Android existing security
mechanisms to detect and prevent this kind of threats, which
may make users suffer from certain direct or indirect economic
losses.

To avoid the above mentioned threats, researches have pro⁃
posed some mechanisms to protect the software against anti⁃re⁃
verse. One of the solutions is code obfuscation [3], which can
be used to transform the original code into a form that makes
reverse engineering harder and more time consuming and at
the same time still possess the same function as the original
software has. In general, the code obfuscation techniques in⁃
clude renaming of the identifiers of the variables, constants,
classes, methods, etc. in the program. Such an obfuscation tool
is ProGuard [4], which is integrated into the Android software
development kit. In [5], a modification of Tiny C Compiler
(TCC) , a simple compiler, is proposed to modify certain uncon⁃
ditional branching instructions to conditional branching and to
make confusing conversion on the critical data of the software.
This modification aims at misleading automated reverse engi⁃
neering tools [6] to detect the original code. However, code ob⁃
fuscation just makes a simple change of the names of classes
or variables. If only this method is used to protect Android ap⁃
ps, as long as the .dex files are found, they can be decompiled
into .smali or .java, and then be reversed.

To protect the software more effectively, new tools as Dex⁃
Guard [7] and Allatori [8] appear, which also support a number

Special Topic

June 2016 Vol.14 No.S0ZTE COMMUNICATIONSZTE COMMUNICATIONS44

1

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

of other features such as control flow randomization, string and
class encryption, and temper detection. In 2014, Piao [9] re⁃
veals that DexGuard has some weaknesses and an attacker is
able to analyze the hex code of a Dalvix executable fi le. Piao
suggests to store the core execute class file through obfuscation
on the server; in this way, when an application needs to exe⁃
cute core routines, it must request these routines from the serv⁃
er, download it and maybe decrypt it. Our analysis shows that
Piao’s solution requires the availability of server all the time
while the protected Android application is running. To over⁃
come this shortage, a security enhancement system with online
authentication for Android application package (APK) called
SeSoa is proposed in this paper, in which Android applications
are only authenticated by the authentication server before be⁃
ing run for the first time after they are downloaded and in⁃
stalled, which reduces the burden on the server.

The rest of this paper is organized as follows. In Section 2,
related work is discussed and the existing security problems re⁃
lated with application protection in the Android security model
and the security goals in SeSoa are analyzed. In Section 3, a
novel solution of protecting software in Android platform is pro⁃
vided. In Section 4, the security of the proposed solution is ana⁃
lyzed. And finally, the conclusions are presented in Section 5.

2 Related Work

2.1 Problems in Android Security Model
Because of the open⁃source feature, Android requires strict

security specification and robust security architecture. The se⁃
curity feature is reflected in the system security design struc⁃
ture, including all aspects in the application framework layer
and the core layer. At the application layer, there are signature
mechanism and application access control mechanism to pro⁃
tect the application security. At the kernel level, Android ob⁃
tains its security goals based on the security features of Linux
kernel systems. Therefore, the resources of different processes
are well isolated by the sandbox mechanism, the unique memo⁃
ry management mechanism and the efficient and safe inter⁃pro⁃
cess communication mechanism. Such security mechanisms
provided by the Android system achieve the security goals to
some extents, but they, especially Android signature and sand⁃
box mechanisms, fail to protect the software of application
from anti⁃reverse.

Firstly, Android system tries to protect the security of the ap⁃
plication using the signature mechanism, which means that the
applications installed in Android system are required to be
signed by some institutes. In fact, the signature mechanism is
not just used to identify the application’s developer, it is also
used to detect whether the application has been illegally tam⁃
pered with. If the answer is yes, the program’s signature can⁃
not pass the verification of Android system, so the result is that
the tempered application does not run correctly. Android sys⁃

tem allows application with self ⁃signed, which means that the
applications can be signed by the developers themselves. If the
signed APK package is decompressed, a folder named ME⁃
TA_INF will be found, in it is the signature information of the
applications. The folder contains MANIFEST.MF, CERT.SF
and CERT.RSA files, multiple RSA file appears if multiple cer⁃
tificate signing is used. MANIFEST.MF is the main APK sum⁃
mary information, such as the APK information, application
properties and the hash values of all files. CERT.SF is the sig⁃
nature file obtained using SHA1withRSA signature algorithm,
which contains a summary of the application signature value.
Attackers often get the correct signature information for the
software by analyzing the file and tamper the software illegally,
regenerate the signature and rewrite these files to pass the veri⁃
fication of the Android system.

Secondly, since Android is a multi⁃process system, isolating
the resources for each application is a basic requirement for se⁃
curity. The sandbox mechanism is adopted in Android system
to make sure that every application’s process is a secure sand⁃
box running in its own instances with a unique ID (uID) as⁃
signed to it. With such a mechanism, each application is run⁃
ning in a separate Dalvik virtual machine (DVM), with a sepa⁃
rate address space and resources. As DVM is running on the
Linux process and dependent on the Linux kernel , Android us⁃
es DVM and Linux file access control to achieve the sandbox
mechanism. Any application that wants to access for system re⁃
sources or other application permission must be declared in its
manifest files or shared uID. But this sandbox isolation technol⁃
ogy on Android also makes the code of its application face the
threat of being decompiled. The reason is that the Java lan⁃
guage application needs to be compiled into a binary byte
code, which is the intermediate code running on DVM and can
more easily be decompiled based on the Java decompile tech⁃
nology, be reverted from the original code to the logic results
and get the identifiers names or other information.

In addition, due to the open source feature of the Android
platform, the decompile technology for the applications on An⁃
droid platform has been fully studied, thus through a number
of mature disassembly tools, it is not difficult to get the Smali
code of the software and then the source code through the re⁃
verse analysis. This makes the study on how to protect the
code effectively in Android platform very important.
2.2 Goals of Application Protection

Generally, a software protection system should meet the fol⁃
lowing secure requirements.
1) Anti⁃tamper, preventing the application from being modified

by some attackers
2) Preventing dynamic debugging, i.e., preventing attackers

from getting the source code of application by using dynam⁃
ic debugging tools;

3) Preventing decompilation, i.e., preventing attackers from
getting the source code of application by using decompile

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

Special Topic

June 2016 Vol.14 No.S0 ZTE COMMUNICATIONSZTE COMMUNICATIONS 45

2

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

tools.

3 Proposed Solution

3.1 SeSoa Overview
To meet the above⁃mentioned requirements, a new solution

called security enhancement system with online authention (Se⁃
Soa) is proposed. The main idea is using an authentication
server to verify whether the APK is enhanced by the autho⁃
rized party and integrity of the APK. The SeSoa consists of the
operator, authentication server (AuS), security enhancement
server (SeS) and Android client equipment. The main security
reinforcement software is running on the SeS to generate tem⁃
plates packers, encrypt the APK’s core files, regenerate signa⁃
ture of APK through implement the script file, and repackage
the new APK. The authentication server is used to verify the in⁃
tegrity of the downloaded APK at the Android client side and
source of APK. The Android client is mainly responsible for
running the environmental monitoring, integrity verification
and decryption of encrypted part of code and loading the origi⁃
nal APK code. Fig. 1 shows the SeSoa system and its opera⁃
tional flows.

1) Input APK
The operator of SeSoa submits the original unprotected APK

to SeS. SeS completes all the functions of security enhance⁃
ment: 1) using the encryption technique to encrypt the dex
code in the application, so that the plaintext code no longer ap⁃
pears on the client, which ensures that the code is protected
from static analysis; 2) adding the safety function code to make
sure that the application can be protected from dynamic debug⁃
ging; 3) adding the code supporting authentication function so
that the client could run the particular APK only after the com⁃
pletion of the authentication by the AuS.

2) Download enhanced APK
The enhanced APK can be downloaded by every Android us⁃

er to the Android mobile terminals.
3) Install and run APK
The users install and run the enhanced APK.

4)Authenticate APK
The enhanced APK needs to complete the online authentica⁃

tion function when it is run for the first time. Only after it pass⁃
es the authentication by the AuS can the enhanced APK get
the security parameters, which allow it to continue running and
move into the APK original function module.

In addition, the SeS and AuS are logical concepts, which
can be separated or implemented on one equipment. However,
they can share the same Database to reduce the complication
of management for data consistency.
3.2 Security Enhancement Process

The security enhancement process is implemented on SeS
(Fig. 2). At the first step, the original APK file needs two pre⁃
treatment functions. One is to gain information about the APK
and its implementation details, including the Smali and Mani⁃
fest files using reverse engineering tools such as APKTool
[10]. The other is to decompress the APK to get the .dex file.
After the pretreatment process, the files are ready to be used in
the following steps.

The two components of the encrypted application and a de⁃
cryptor stub are generated at the second step. Unlike Proguard
and Dexguard using obfuscation to make the code harder to be
understood, SeSoa encrypts the .dex file and decrypts it before
it is loaded into memory. In this way, the .dex file will not be
stored as the plain text in the file system, which means that the
others must decrypt it first if they want to obtain the code. To
make the encrypted .dex file run normally in the Android sys⁃
tem, the decryptor stub has to be implemented to fulfill the
fetch of the encrypted application into memory, decrypt the ap⁃
plication and yield the original .dex file, which can be loaded
into the DVM and executed. Because the decryptor stub
should be run first, so we have to change the manifest file to en⁃
sure that the application can be run normally. These changes
include replacement of the component names, modification of
the primary activities property, addition of some new services
and activity components, etc.

In order to attack such a security enhancement scheme, a re⁃
verse engineering tool has to gain access to the decrypted .dex

APK: Android application package
AuS: authentication server

DB: database
SeS: security enhancement server APK: Android application package

▲Figure 1. System framework and operational flows. ▲Figure 2. The security enhancement process of SeSoa.

3. Install and
run APK

Operator

SeS
DB

Client

1. Input APK

4. Authenticate APK

2. Downloa
d enhanced APK

Smali filesManifest filesOther files
Reverse

engineering
Generate
substitute

Decryptor stuband changedresource files
Signature 1

Dex filesDecompress Encrypt EncryptedDex files
Signature 2

Security codes
Signature 3

Repackage EnhancedAPK

Signature 4

APK

AuS

Special Topic

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

June 2016 Vol.14 No.S0ZTE COMMUNICATIONSZTE COMMUNICATIONS46

3

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

file. This can only be done after the .dex file is successfully de⁃
crypted and loaded into the memory. To protect from such kind
of threats, some other security mechanisms such as anti ⁃ dy⁃
namic debug function are needed. More importantly, the client
also has no information about the source of the APK through
this method, so the authentication mechanisms should be ap⁃
plied to make sure that the APK is from the authorized party.
All these security mechanisms besides encryption/decryption
are included in the security code module in Fig. 2.

At the third step, the signature of the resource files (signa⁃
ture 1), the signature of the original .dex files (signature 2) and
the signature of security codes (signature 3) are generated sepa⁃
rately according to different parts of data. These signatures are
used to protect the APK from being tampered.

Finally, all the files in the application are repackaged, and
need to be resigned as any normal applications should do, as
the Android system requires that developers must sign applica⁃
tions with their private key/certificate unless the application
cannot be installed on user devices. Furthermore, because of
the online authentication function, the data (application ID, se⁃
cret K, CKSUM, Addr) are sent and stored in the database on
AuS for further use.
3.3 Application Load Process

After APK is downloaded and installed in the Android client
side, the decryptor stub program is loaded and run at once.
The decryptor stub calls the online authentication module to
communicate with AuS, and only those applications that pass
the authentication verification can get the correct address of
the required Dex. Then the Key used for encrypting .Dex is re⁃
trieved and used to decrypt .Dex file, and the successfully de⁃
crypted .Dex file is the original .Dex file of the application,
which can be loaded into DVM and executed. Fig. 3 shows this
application load process.

In fact, the process is not as easy as what is described above
because we have to make sure that the whole process about de⁃
cryption is secure and other applications cannot get the plain
text of .dex file through the process. DVM also has limited in⁃
struction set, so there is no direct way to access the bytecode
with an instruction, which makes it impossible to execute the
bytecode stream during the running time. To circumvent this
restriction,“Java Native Interface”(JNI) of the DVM is used,
JNI is intended to allow execution of native code [11]. The mu⁃
tual authentication process is another complicated process, the
detailed authentication protocol and processes in SeS and An⁃
droid client are described in the following section.
3.4 Online Authentication Process

The online authentication process is used to achieve the mu⁃
tual authentication between the Android client and authentica⁃
tion sever when an app is installed and run for the first time.
Considering the performance of the implementation on An⁃
droid side, only the symmetric cryptography is used in the
scheme. Table 1 lists the notations used in this section.
Fig. 4 shows mutual authentication procedure of the pro⁃

posed Android application security enhancement scheme. This
procedure is triggered by the application at the Android side af⁃
ter the decryptor stub starts and finishes generating the check
sum of the application (CKSUM), as well as retrieving the K
from the application.
1) The application on Android client side sends an authoriza⁃

tion request message to the AuS, which contains its own
identifier IDA；

2) AuS receives the message and retrieves IDA from the authen⁃
tication request message, then it can use IDA to select K and
CKSUM from database, which are stored in the database by
SeS. At the same time, the SeS generates a random number
R1, and sends it to the Android client. After that, it calcu⁃
lates XRes1 using such symmetric algorithm as DES or AES
with R1 and CKSUM as the input parameters and K as the
key. XRes1 will be stored and used later.

3) When the client application receives R1, it can calculate
Res1 with the same algorithm running on AuS, using K and

▼Table 1. Notations

Notions
K

CKSUM
IDA

Addr
R1/2
Res1/2
XRes1
EK

DK

Description
Symmetric key

Integrity check value
Identification of application

Start address of main Dex program
Random number
Response value

Expect response value
Encryption using K
Decryption using K

◀Figure 3.
Application load process.

Load decryptor stub

Load security code

Mutual authentication

Retrieve encrypted key

Decrypt .Dex file

Load .Dex file

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

Special Topic

June 2016 Vol.14 No.S0 ZTE COMMUNICATIONSZTE COMMUNICATIONS 47

4

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

CKSUM as the algorithm’s inputs. Then the app generates
random number R2, and sends R2 and Res1 back to the
SeS.

4) After SeS retrieves R2 and Res1, Res1 is compared with
XRes1. If they are equal, it is shown that the application in
Android is enhanced by SeS and the application has not
been modified. If they are not equal, the app cannot get the
K and correct CKSUM, and AuS will send error number to
the client and stop the process. Secondly, SeS generates
Res2 using encryption algorithm, Res2 equals Ek(R2||Addr).
Finally, SeS sends Res2 back to the client.

5) At the Android side, Res2 can be retrieved from the mes⁃
sage and decrypted to R2’||Addr’by the decryption algo⁃
rithm using the same key K. Then R2’and R2 is compared,
if they are equal, it means that this message is sent by the
real SeS, and the application can regard addr’as the cor⁃
rect security parameter, which can be some code in the ini⁃
tial process or some key data needed by the application; oth⁃
erwise, the application can react as what its security strate⁃
gy allows.

4 Experiments and Evaluations
In this section, the test results of SeSoa on compatibility and

performance are presented, which indicates that SeSoa is us⁃
able. The security of SeSoa is also analyzed to ensure that it

can also meet the requirement for security.
4.1 Compatibility Analysis

Besides the security goals, SeSoa should also possess the ca⁃
pability of enhancing arbitrary application automatically. To
test this feature, 50 applications in Android were downloaded
and applied in our test. These applications were randomly se⁃
lected from Android App Store, loaded and run in the 100
types of mobile phones with Android 4.0- 4.4 platforms. For
each application, we first evaluated whether it could be en⁃
hanced by SeSoa. If the answer is positive, we evaluated wheth⁃
er it could be loaded and run in the 100 types of smartphones.
Experimental results are shown in Table 2.

The success rate for SeSoa to enhance the random applica⁃
tions is 82%, which is acceptable, although not very high. How⁃
ever, as the complexity of the applications increases, the suc⁃
cess rate of the reinforcement system will decline. Therefore, it
is necessary to further optimize the program.
4.2 Performance Analysis

In order to test whether SeSoa seriously affects the perfor⁃
mance of the original application, ten test applications were
randomly selected out of the above mentioned 41 apps that
were successfully run on our 100 test mobile platforms. Be⁃
cause the running time varies on different platforms, the experi⁃
ments presented in this section were conducted using Samsung
Galaxy S4 smartphone, equipped Exynos 5410 dual quad⁃core
processor and 2 GB RAM.
Table 3 shows the test results of performance. It can be

seen that after being enhanced by the SeSoa, the installation
package size of the applications increases about 10%, the aver⁃
age start⁃up time is increased by about 20%. Since the start⁃up
time is generally less than 1 sec, this will not make users feel
different compared with the start⁃up time of original APPs.
4.3 Security Analysis

1) Anti⁃tamper
We use the multiple signature mechanism to prevent the ap⁃

plication from being tampered. In the security enhancement
process, three signatures are generated at the third step. There⁃
fore, at the client side, the signature of the resource files, the
signature of the original .dex files and the signature of security
code are verified during the application’s start⁃up process, be⁃

DB: database

▲Figure 4. Authentication scheme.

▼Table 2. Test results for compatibility

App size

<1 MB
1 MB-5 MB

>5MB
Sum

Success rate

Appnumbers
11
25
14
50
⁃

EnhancedAPP numbers
11
23
10
44
88%

Successnumbers forloading
11
23
9
43
86%

Successnumbers forruning
11
22
8
41
82%

Platformcompatibility
99.3%
98.6%
96.4%
98.1%

⁃

Start
(K,CKSUM)

Request
authentication

Receive data

Generate
Res1=EK(R1‖CKSUM)

IDA

Generate R2 R2,Res1

R1

Receive data

Computer:Dk(Res2)
Retrieve Addr

Res2

End

Retrieve IDA

Generate R1

Send R1

Retrieve R2,Res1

Generate
Res2=EK(R2‖Addr)

Generate
XRes1=EK(R1‖CKSUM)

Select K,CKSUM

Res1=XRes1?

Y

DB

Android client
Authentication sever

Special Topic

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

June 2016 Vol.14 No.S0ZTE COMMUNICATIONSZTE COMMUNICATIONS48

5

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

fore the decryptor stub begins to decrypt .dex files. If any of
the three verifications fail, the application will stop running. In
this way, any tamper of the application will be detected.

The other anti⁃tamper technique we used is online authenti⁃
cation. Only the application that has passed the verification of
AuS can obtain the secure parameters to run the core code in
the APK. Any modification of the APK will lead to the failure
of generating the correct CKSUM and secret K, so the APK on
the Android client can hardly calculate the correct response of
R1, which can be regarded as the challenge of AuS in a chal⁃
lenge⁃response protocol.

2) Preventing dynamic debugging
In our solution, a monitoring process ring is used to monitor

whether there are some system calls for Ptrace, which is used
by debuggers and other code ⁃ analysis tools to analysis the
code.

The mainstream debugging tools use Ptrace system calls in
Linux system; if a process is calling Ptrace, there must be
someone using such kind of tools to debug and that the applica⁃
tion should be stopped. This process for monitoring the call of
Ptrace is used by most application enhancement systems, but
the risk for such a method is that attackers can stop the moni⁃
toring process and then debug the application again. To avoid
this weakness, we designed the monitoring process ring mecha⁃
nism.

Our monitoring process ring scheme has three processes: the
parent process (the main process to be protected), the child
process (generated by the parent process) and the grandchild
process (generated by the child process). These processes com⁃
pose a process ring and monitor each other in two levels. The
first level of monitoring is to ensure that the process of the ring
is not damaged, which means that these three processes will
not be killed. This can be achieved by monitoring the pipeline.
The father process and child process listen anonymous pipes
between them, so do the child process and the grandchild pro⁃
cess. The father process monitors the other processes by listen⁃
ing to the named pipe. Once a process is killed, the other end

of the pipe will be aware of, and the related process will enter
its protection module to end the parent process. The second
level of monitoring helps ensure that the process ring not be de⁃
bugged by monitoring the status of the other two processes, us⁃
ing two threads created by each process, the parent process
will be ended in case that the process finds its child or grand⁃
child process’status changed to suspended, which indicates
that the process is debugged by the other process.

Our solution also monitors the communication of Java De⁃
bug Wire Protocol (JDWP) to avoid the application from dy⁃
namic debugging on the java layer. The strategy is to find out
all Java debug tools using JDWP in their socket communica⁃
tions and to judge what kind of debug tool is connected to. If
the debug tool belongs to Andbug, which is usually used by a
debugger to reverse⁃engineer applications for the DVM on An⁃
droid platform, then the process will be killed at once.

3) Preventing decompilation
The main idea for preventing decompilation is encryption.

The .dex files are encrypted with symmetric cryptographic algo⁃
rithm. The key used in the algorithm is hidden among the
codes of the application. In addition, we implement the White
Box Cryptography of AES and SMS4, which is used to encrypt
the symmetric cryptographic keys so that the encryption algo⁃
rithm can be run in an unsafe environment of Android system.

5 Conclusions
There are great demands for code protection to prevent An⁃

droid applications from being reversed and tampered, because
the source codes of the Android applications can be more easi⁃
ly recovered by the existing reverse engineering methods. In
this paper, we propose a security enhancement system with on⁃
line authentication for Android APK called SeSoa, in which
multiple security mechanisms such as encryption, mutual au⁃
thentication and monitoring process ring are used to protect
Andriodapplications from tamper, dynamic debugging and de⁃
compile. To achieve the good balance between security and us⁃
ability, the mutual authentication is only proceeded when an
enhanced Android application is installed and run at the first
time.

▼ Table 3. Test results for performance

App no.

1
2
3
4
5
6
7
8
9
10

Original
app size
(KB)
560
740
813
1123
1457
2360
2709
3234
4921
8913

Enhanced
app size
(KB)
581
784
897
1260
1634
2523
2942
3558
5489
9974

Size
change
rate (%)

3.8
5.9
10.3
12.2
12.1
6.9
8.6
10.0
11.5
11.9

App
startup
time (ms)

284
415
396
675
561
741
759
737
891
919

Enhanced
app startup
time (ms)

365
467
452
813
697
879
896
834
1019
1131

Startup time
increase rate

(%)
28.5
12.5
14.1
20.4
24.2
18.6
18.1
13.2
14.4
23.1

References
[1] Android Open Source Project. (2015, Oct.). Android security overview [online].

Available: https://source. android.com/security/index.html
[2] AppBrain. (2015, Nov.). Number of android applications [online]. Available: http:

//www.appbrain.com/stats/number⁃ of⁃android⁃apps
[3] V. Oorschot, and C. Paul,“Revisiting software protection,”in Information Securi⁃

ty. Germany: Springer Berlin Heidelberg, 2003, pp. 1-13.
[4] Sourceforge. (2015, Oct.). ProGuard [online]. Available: http://proguard.source⁃

forge.net
[5] C. Coakley, J. Freeman, and R. Dick. (2005, Feb. 4). Next⁃generation protection

against reverse engineering [Online]. Available: http://www.anacapasciences.com/

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

Special Topic

June 2016 Vol.14 No.S0 ZTE COMMUNICATIONSZTE COMMUNICATIONS 49

6

D:\EMAG\2016-06-51/VOL13\F5.VFT——7PPS/P

publications/protecting_software2005.02.09.pdf
[6] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna,“Static disassembly of obfus⁃

cated binaries,”in USENIX security Symposium, San Diego, USA, 2004, pp. 18-
18.

[7] DexGuard. (2015, Oct.). DexGuard, premium security software for android appli⁃
cations [online]. Available: http://www.saikoa.com/dexguard

[8] Allotori. (2015, Oct.). Allatori java obfuscator [online]. Available: http://www.alla⁃
tori.com

[9] Y. Piao, J. H. Jung, and J. H. Yi,“Server ⁃based code obfuscation scheme for
APK tamper detection,”Security and Communication Networks, vol. 9, no. 6, pp.
457-467, 2014. doi: 10.1002/sec.936.

[10] APKTool. (2015, Oct.). A tool for reverse engineering android apk files [online].
Available: http://ibotpeaches.github.io/Apktool

[11] P. Schulz. (2012, Jun. 7). Code protection in android [Online]. Available: http://
net.cs.uni⁃bonn.de/fileadmin/user_upload/plohmann/2012⁃Schulz⁃Code_Protec⁃
tion_in_Android.pdf

Manuscript received: 2016⁃01⁃10

Call for Papers

ZTE Communications Special Issue on

Channel Measurement and Modeling for Heterogeneous 5G

While cellular networks have continuously evolved in re⁃
cent years, the industry has clearly seen unprecedented chal⁃
lenges to meet the exponentially growing expectations in the
near future. The 5G system is facing grand challenges such
as the ever-increasing traffic volumes and remarkably diver⁃
sified services connecting humans and machines alike. As a
result, the future network has to deliver massively increased
capacity, greater flexibility, incorporated computing capabili⁃
ty, support of significantly extended battery lifetime, and ac⁃
commodation of varying payloads with fast setup and low la⁃
tency, etc. In particular, as 5G requires more spectrum re⁃
source, higher frequency bands are desirable. Nowadays,
millimeter wave has been widely accepted as one of the main
communication bands for 5G. As a result, envisioned 5G re⁃
search and development are inclined to be heterogeneous,
with possibly ultra dense network layouts due to their capa⁃
bility to support high speed connections, flexibility of re⁃
source management, and integration of distinct access tech⁃
nologies.

Towards the heterogeneous 5G, the first and foremost hur⁃
dle lies in the channel measurement and modeling in the

broad and diversified 5G scenarios. This special issue is ded⁃
icated to providing a platform to share and present the latest
views and developments on 5G channel measurement and
modeling issues.
Schedule

Submission Deadline: November 1, 2016
Final Decision Due: December 1, 2016
Final Manuscript Due: December 15, 2016
Publication Date: February 25, 2017

Guest Editors
Prof. Shuguang Cui, Texas A&M University, USA. Email:

cui@tamu.edu
Prof. Xiang Cheng, Peking University, China. Email:

xiangcheng@pku.edu.cn
Paper Submission

Please directly send to cui@tamu.edu and
xiangcheng@pku.edu.cn, using the email subject“ZTE-
CMMH5G-Paper-Submission”.

Special Topic

SeSoa: Security Enhancement System with Online Authentication for Android APK
DONG Zhenjiang, WANG Wei, LI Hui, ZHANG Yateng, ZHANG Hongrui, and ZHAO Hanyu

June 2016 Vol.14 No.S0ZTE COMMUNICATIONSZTE COMMUNICATIONS50

DONG Zhenjiang (dong.zhenjiang@zte.com.cn) received his MS degree from Ha⁃
rbin Institute of Technology, China. He is the leader of the Business Expert Team of
Expert Committee for Strategy and Technology of ZTE Corporation and the deputy
president of Cloud Computing and IT Research Institute of ZTE Corporation. His re⁃

search interests include cloud computing, big data, new media, and mobile internet.
He has led more than ten funded programs and published a monograph and more
than ten academic papers.
WANG Wei (wang.wei8@zte.com.cn) received her BS degree from Nanjing Univers⁃
ity of Aeronautics and Astronautics, China. She is an engineer and project manager
in the field of mobile internet at Cloud Computing and IT Research Institute of ZTE
Corporation. Her research interests include new mobile internet services and appli⁃
cations, PaaS, and terminal application development. She has authored five academ⁃
ic papers.
LI Hui (lihuill@bupt.edu.cn) received her PhD in cryptography in 2005 from Be⁃
ijing University of Posts and Telecommunications (BUPT), China. From July 2005,
she has been working for School of Computer Science at BUPT as a lecturer and as⁃
sociate professor. Her research interests are cryptography and its applications, infor⁃
mation security and wireless communication security.
ZHANG Yateng (526551337@qq.com) is a graduate student in School of Computer
Science at BUPT. His research interests include smart phone security, application
of cryptographic algorithms, and implementation of white⁃box encryption algorithm
on mobile platform.
ZHANG Hongrui (zhanghongrui@bupt.edu.cn) is a graduate student in School of
Computer Science at BUPT. He is conducting research on information security and
software protection.
ZHAO Hanyu (hyzhao1990@163.com) is a graduate student in School of Computer
Science at BUPT. He is conducting research on software protection in smartphone.

BiographiesBiographies

7

