B Special Topic

DOI: 10.3969/j. issn. 1673-5188. 2016. S0. 002

http://www.cnki.net/kcms/detail/34.1294.TN.20160607.1841.002.html, published online June 7, 2016

Verification of Substring Searches on the

Untrusted Cloud

Faizal Riaz-ud-Din and Robin Doss

{School of Information Technology, Deakin University. Burwood. VIC 3125, Australia)

'A Abstract

Ensuring the correctness of answers to substring queries has not been a concern for consumers working within the traditional con-

fines of their own organisational infrastructure. This is due to the fact that organisations generally trust their handling of their own
data hosted on their own servers and networks. With cloud computing however, where both data and processing are delegated to

unknown servers, guarantees of the correctness of queries need to be available. The verification of the results of substring search-

es has not been given much focus to date within the wider scope of data and query verification. We present a verification scheme
for existential substring searches on text files, which is the first of its kind to satisfy the desired properties of authenticity, com-

pleteness, and freshness. The scheme is based on suffix arrays, Merkle hash trees and cryptographic hashes to provide strong guar-

antees of correctness for the consumer, even in fully untrusted environments. We provide a description of our scheme, along with

the results of experiments conducted on a fully-working prototype.

'A Keywords

substring search; query verification; cloud

1 Introduction

he paradigm shift from traditional, locally - hosted

databases and infrastructure to their deployment

on the cloud has provided a robust solution for

those seeking to minimising costs whilst at the
same time greatly enhancing flexibility. However, in spite of
these benefits there are a number of areas of concern over the
control of the data that gets outsourced, as well as the question
of trust that arises when one hands over data and processing to
a cloud service provider (CSP).

An elegant solution to this trust problem would be reducing
requirements of trust in the relationship between the user and
the CSP, and instead verifying the computation performed by
the CSP and the authenticity of the data received by the user.
This approach, known as query and data verification, attempts
to provide data processing guarantees to consumers that cannot
be falsified. Such schemes require the server to return a proof
of correctness (known as a verification object or VO) with the
results, which is used by the client to verify the correctness of
the results.

This paper focuses on a substring query verification scheme
for string matching queries against file-based data hosted on
untrusted cloud servers. Substring queries match arbitrary sub-
strings to larger strings. Research in the area of substring que-
ry verification has been scarce, with keyword search verifica-

10 ' ZTE COMMUNICATIONS June 2016 Vol.14 No.SO

DA\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P1

tion being more prevalent.

1.1 Our contributions
Our contributions in this paper may be summarised as fol-

lows:

® To the best of our knowledge, we provide the first existential
substring query verification scheme that satisfies the proper-
ties of completeness, authenticity, and freshness.

® We show that our scheme detects both false positive and
false negative query results, as opposed to the closest com-
parable substring matching verification scheme [1] that pro-
vides detection of false positives, but fails to provide proof
for the detection of false negatives.

® Qur scheme provides smaller VO sizes than the closest com-
parable substring matching verification scheme for large
matches.

1.2 Motivation

There are commonly three types of substring searches that
are executed on strings: existential, counting and enumeration
queries. Typically, a string x is sought in a string S. Existential
queries test whether x exists in S, counting queries that return
the number of occurrences of x in S, and enumeration queries
list all of the positions in S where x occurs. We focus on provid-
ing verification for existential queries in this paper, which we
may also refer to simply as substring searches.

Proper substring searches provide greater flexibility and con-
trol with what is being searched for than keyword searches
(where the search focuses on whole words rather than partial
words). As such, one may be able to search for partial words, a
combination of words where the text being matched begins or
ends in the middle of a word, or in blocks of text that are com-
posed entirely of characters without separators. Suffix trees,
suffix arrays, finite automaton, and other techniques are used
for realising proper substring searches. We focus on providing
a verification scheme for these types of substring searches.

In the cloud environment, without a query verification mech-
anism in place, the only guarantee clients have of receiving
correct answers to queries against cloud - hosted data is the
trust between them and the CSP. However this may not always
be sufficient, and definitely does not provide an absolute guar-
antee of correct query results.

1.3 Applications
Providing verification that a query has been correctly execut-

ed and that the received response with respect to the submitted

query is correct is of tantamount importance for applications

running on the cloud. With respect to existential query verifica-

tion the following represents a small subset of applications that

would benefit from our scheme:

® (uerying large sets of biological data for specific occurrenc-
es of smaller DNA or RNA sequences as is required in se-
quence alignment algorithms. Our scheme may be used as a
building block upon which to construct sequence alignment
algorithms that provide proofs of correctness for alignment
queries executed on remote cloud servers.

® Querying databases for partial matches of registration num-
bers, which may consist of alphanumeric and special charac-
ters. Our scheme can provide a basis upon which pattern
matching queries may be verified for correctness when exe-
cuted against databases stored on the cloud.

® Proving guarantees of correctness for queries issued against
sensitive data such as medical records that may be stored
on remote servers.

® Verification of answers to queries against text data created
using agglutinative languages [2] where distinguishable
words are not well - defined. Although languages such as
English, where words are well-defined, may benefit from in-
verted indexes based on terms, and therefore from verifica-
tion schemes based on inverted indexes, agglutinative lan-
guages may not fully benefit from such indexes, and our
scheme provides a more robust method for providing search
result verification against searches on such languages.

2 Related Work

Although the research in the areas of file verification at the
block-level and byte level is plentiful [3]-[6], there has been
relatively little work done in the area of existential substring

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P2

Special Topic N

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

query verification against single or multiple files.

The same can be said for substring query verification in the
area of databases. Research into providing verification for que-
ries based on numeric - based predicates [7]-[10] is plentiful
with a number of papers published recently. A number of
schemes based on Merkle hash trees (see Subsection 3.3) [7],
[11]-[14], signature-chaining [15]-[17], and other approaches
[18]-[22] have been presented in the literature largely with re-
spect to numeric-based query verification.

However, substring queries look at a portion of the value in
a given tuple attribute. Since any combination of the charac-
ters making up the value could be searched for, it is harder to
find efficient verification schemes.

The work presented in [23], [24] provides substrings search
verification. However, the study is based on inverted indexes,
which are limited to providing keyword -level verification. As
such, although they provide verification for substring searches
within documents, they do so at a higher granularity than what
is achieved by proper substring searches.

The scheme most closely related to ours is presented by Mar-
tel et al. in [1]. They propose a model called a Search Directed
Acyclic Graph (DAG), which is used to provide methods to
compute VO for a number of different data structures. One of
these data structures is the suffix tree that is used to provide
verification of proper substring searches. Their verification
scheme uses hashing and techniques similar to that of Merkle
Hash Trees to achieve verification of substring searches. How-
ever, although they provide proofs for detecting false positive
queries, they do not do so for false negative queries. Addition-
ally, their scheme, although efficient for small substring search-
es, would incur large bandwidth costs for longer substring
searches. We address these two concerns and propose our
method that also provides authenticity, completeness, and
freshness.

3 Preliminaries
In this section we briefly describe the cryptographic primi-
tives we use in our proposed scheme.

3.1 Secure Hash Function

A secure hash function, h(x)—d | takes as input an arbi-
trary-length string, x, and produces a fixed-length hash digest,
d. The one-way property of the secure hash function guaran-
tees that given only a hash digest, d, it is infeasible to produce
the original input string, x. The collision-free property of the se-
cure hash function guarantees that given two distinct strings, x
and y, their respective hash digests, d and e, will never be the
same 1.e. h(x)#h(y). Commonly used secure hash schemes

are MD5 [25], SHA1 [26] and SHA2 [27].

3.2 Digital Signature

A digital signature scheme consists of key generation, sign-

June 2016 Vol.14 No.SO ZTE COMMUNICATIONS = 11

B Special Topic

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

ing, and verification algorithms. The key generation algorithm
produces a pair of related keys, known as public (pk) and pri-
vate, or secret (sk) keys. The signing algorithm sign(sk, m) —
mytakes as input the private key (sk) and a message (m) to pro-
duce a digital signature (my). The verification algorithm verify
(pk,my,m) — (YIN) takes as input the signature my, the public
key pk, and the received message m,, and returns a Y or NV to
either affirm correctness of the received message m, with re-
spect to the original message m or to deny it. The most com-
monly used digital signature scheme is RSA [28].

3.3 Merkle Hash Tree

A Merkle Hash Tree (MHT) [29] is a binary tree that has as
its leaves secure hash digests of data items. Each node in the
tree is formed by concatenating the hashes of its child nodes,
and then hashing the concatenated hashes. The root hash is
signed with the owner’s private key, and then can be validated
using the owner’s public key. The MHT allows verification of
the order of the data items, their individual values, and a range
of values. Verification involves retrieving the specified value,
and then finding all nodes that are siblings of all nodes from
the specified leaf to the root. The given data value is then
hashed and combined with the other node hashes to regenerate
the root, which is then checked against the original root to con-
firm or reject the value. MHT may also be implemented as B+
trees to improve efficiency.

4 Proposed Scheme
In this section, we describe our proposed scheme for the ver-
ification of substring queries.

4.1 System Model

A typical system model for our proposed substring query ver-
ification scheme is illustrated in Fig. 1. The data owner holds
data that is queried by users. However, due to resource con-
straints or other reasons, the data owner wishes to outsource
the data and query processing to the cloud for easier manage-
ment. The cloud server therefore becomes a proxy for hosting
data and query processing on behalf of the data owner.

Data owner

Public key
&
MHT root

Results with proof

Cloud server Query User

MHT: Merkle Hash Tree

AFigure 1. System model for the proposed substring query verification
scheme.

12 | ZTE COMMUNICATIONS = June 2016 Vol.14 No.SO

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P3

The data owner pre - processes the data, the final step of
which includes generating an MHT root. The owner stores the
root of the MHT and publishes the string data to the server,
and publishes the public key within the context of a public key
infrastructure.

A user submits substring queries to the server, which in re-
sponse executes the query to obtain the query result. The que-
ry result is then sent back to the user together with a VO. The
user then processes the query result and VO with a verification
algorithm to either accept or reject the result.

4.2 Notation

Table 1 shows the definitions of pre-defined operations that
are used in the rest of the paper. Table 2 provides a list of the
notations used in this paper to facilitate the descriptions of our
proposed scheme.

4.3 Verification Properties

Verification schemes must provide solutions for at least
three desirable properties authenticity, completeness, and
freshness. These properties have been described in the litera-
ture previously [7], [16], [18], [30], but for the purpose of our
scheme, we provide definitions of these properties below in the
context of existential queries.

Consider a result R of an existential query () that has been
executed fully and correctly, in an uncompromised environ-
S }. Over

time, S undergoes updates, causing its state to change from

ment, on a string S that comprises substrings {5, ...

S°, signifying the initial state at time 0, through to the current
state at the current time, signified by S°. The qualifying sub-
strings in S that satisfy the predicates of) are denoted
{SZ) Slm} We denote the existential function as F . We call

VTable 1. Pre-defined operations and their descriptions

Operation Definition

Builds an MHT based on data values sorted in
a specified order from vito v.. Outputs a new
MHT, mht

BuildMHT(v,,"*,v,)— mht

Builds a suffix array from string S . Outputs a
new suffix array, sa .

BuildSA(S) — sa

Builds a VO from a set of values (V), and a

G = VO set of MHT nodes (NN). Outputs a new VO

Checks whether string x is a substring of
string S using S ’s suffix array, sa . Outputs
Yif x is a substring of S, otherwise outputs N.
If x is a substring of S, sets ¢ to the first

IsSubstringOfx,S.sa) — <{ Y,N}, i, ,f” [{ > indexin sa where x prefixes S,yﬁ(m()
Otherwise, if x is not a substring of S. i, and
i, are set to the neighbouring indexes in sa
between which x would have been found, had
it existed in sa .

Traverses the given mht from the leaf v to the
root, adding all siblings along that path to the
set IV

GetSinglePathSiblings(v,mht) — N

Traverses the given mht from each of the
leaves v, and v, to the root, adding all
siblings along the paths that are not ancestors
of either leaf to the set N

GetRangePathSiblings(v,,v, ,mht)— N

VY Table 2. Notations used in this paper

Notation Definition Notation Definition
DO Data owner X Substring being sought
U Data user R Root of an MHT

CGS Cloud server Rio Root signed with DO ’s secret key

S String Roo DO’s secret key

ISI Size of string S Roo DO’s public key

S; Character at position ¢ in S L Leaf I of an MHT
Si. Substring of S from S; to S; VO Verification object
Sty Suffix of S starting at ¢ Q A query

sa Suffix array of S QR A query result
sali) Element ¢ in sa

R the correct, uncompromised, unaltered result of Q. In the
case where () is issued remotely to D, which resides in a possi-
bly untrusted environment, we consider the authenticity, com-
pleteness and freshness of the final result R received by a re-
mote user as follows.

Definition 4.1: Authenticity in our scheme means that R is
a result of executing F only on the substrings of the uncom-
promised string (i.e. that was created by the data owner). Spe-
cifically, authenticity of an existential query result R is satis-

fied when
R=F({S:S})AS e {Sp-8,}:8 (" U Us?).

Definition 4.2: Completeness in our scheme means that R’
is a result of executing F on the same number of substrings as
that executed by a correctly executing Q on an uncompromised
string. Specifically, completeness of an existential query result
R’ is satisfied when

R =F({S:S) A {85} = |{s?- : -Sf}l .

Definition4.3: Freshness in our scheme means that R is a
result of executing F on the most recently updated version of
the uncompromised string. Specifically, freshness of an existen-

tial query result R is satisfied when

R =F({S;-S) Al {88, [e {88,)8 e 87

4.4 Suffix Arrays

Let S be a string composed of characters from a set % of
fixed sized, finite ordered alphabets. The length of Sis denoted
by n. $ specifies a special end - of - string marker, which is
smaller than all alphabets in %, but which does not occur in S.
S|[i] denotes the index of the ith character in S.

The suffix array sa of the string S'is an array of length n + 1,
where the elements in the array are unique indexes in S 1§,
and are ordered lexicographically based on the suffixes of S,
where each element points to a different suffix as indicated by
its indexing value.

Table 3 shows an example of the suffix array for the string

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P4

Special Topic N

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

‘aardvark ’. The end-of-string marker ($) is appended to the
string before the suffix array is constructed, and has the small-
est value out of all the alphabets in the string, resulting in its
being sorted to the first element. The remaining suffixes’ in-
dexes are placed in lexicographical order in the suffix array.

4.5 Assumptions
We assume the following for the correctness of our scheme:

1) DO’ s public key has been obtained by U, possibly through
a secure channel or reliable public-key infrastructure.

2) DO’s secret key has not been compromised.

3) The public key encryption scheme used is secure under ap-
propriately specified parameters.

4) It is infeasible to find collisions in the secure hash function
that is used as a basis for the hash chaining and MHT gener-
ation procedures.

4.6 Hash Chains with Sequential Indexing

We introduce the concept of hash chains with sequential in-
dexing (HCSI) as a building block for our scheme. The HCSI is
essentially a hash chain with each link on the hash chain being
tagged with a sequential identifier.

Definition 4.4: The HCSI is defined recursively as follows:

h(i//S,) ifi=1S|
HCSI(S)= \n(i // S, // HCSIGS,) ifi<Is|
null if 1> 1Sl
The HCSI allows the specification of four variables that are
useful for our scheme @& B,S4, Y, where a and B are inde-
xes in S, Sﬁ is the character at index B in S, and ¥ is a
hash digest.
Definition 4.5: ¥ is a prefix of Sw[/(m(i)) that is minimally u-
nmatched to x, s.t. %o, =%, NX, #x, Nke {O‘x‘}
Definition 4.6: a refers to the position at the head of the
HCSI, and is defined in the context of the suffix that it is asso-
ciated with, as follows: a(Ssuff([)): L. In other words, a is the
position in the HCSI that corresponds to the first character in
S.mjj"(i)’ and has the same value as saf(t) .

¥ Table 3. Suffix array for the string ‘ aardvark’

SA index SA value Resulting suffix
0 9 $
1 1 aardvark $
2 2 ardvark $
3 6 ark $
4 4 dvark $
5 8 k$
6 3 rdvark $
7 7 tk $
8 5 vark$

June 2016 Vol.14 No.SO ZTE COMMUNICATIONS ' 13

B Special Topic

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

Definition 4.7: B refers to the position of the last matching
character in Sm[/(i) when x is a prefix of Sm[/(i)a otherwise it
refers to the first non-matching character in SSM[/(i) if x is not
a prefix of Sﬂ,ﬂ(,;)- In the case where «x prefixes Ssuf]'(iy
B=i+lxl=1, otherwise if x does not prefix Smﬁv(i),
B=i+lxl-1,

Definition 4.8: Sz is the character in S at position B. If
x 1s a prefix of Ssuj]'(iy SB =%, otherwise SB =X

Definition 4.9: ¥ refers to the first hash digest in the HCSI
occurring after B, and is defined as Y(B) = HCSI(S,,) .

By utilising the HCSI variables as given above, we are able
to minimise the hash operations performed by the user from
IS 7@ T 1 hashes to at most lxl+ 1 hashes, where I <IS ;..

The sequential identifiers allow us to reduce the number of
hashing operations to be performed on the user’s end, and also
reduces the communication cost by sending to the user only
those hashes in the chain that the user needs to perform verifi-
cation. Algorithm 1 shows how the reconstruction may be re-
alised.

Algorithm 1: HCSI Reconstruction

Input: x, @, B, S, v
if !|(S;) then
/* Matching reconstruction */
B —a+lxl-1; S'ﬁ AN X

else
if (B a+l<ll (xﬁ—a+1 #Sﬁ) then
/* Non-matching reconstruction */
B Bi Sy Sgin x4/ S
else
/* Invalid B and/or Sg*/
reject,
end
end
hesi < (B, Sé, v);
for i< —1 down-to « do
hcsieh(i,x;_aﬂ,hcsi);
end
4.7 Scheme Outline

Our intuition is to leverage MHTSs to act as verification struc-
tures for suffix arrays. In essence, we build an MHT on top of a
suffix array (Fig. 2), and then allow query results to be passed
to the user along with VOs as proofs for the result. The user
then verifies the result using the VO.

We define five phases for the implementation of our scheme:
Setup Phase, Query Phase, Query Response Phase, Verifica-
tion Phase, and Update Phase.

14 | ZTE COMMUNICATIONS = June 2016 Vol.14 No.SO

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P5

N2
h(h(N4)lh(5))

l l MHT

N4 N5
h4: h(41"d"[h5)
hS: h(51"v"Ih6) Suffix

chains

h6: h(61"a"h7) h(6l"a"h7
h7: h(71"r"[h8) h(71"r"[h8)
h8: h(Sl"k") h(sl"k”)

MHT: Merkle Hash Tree

AFigure 2. An example of the sequenced hash chain of the suffixes
‘ark’ and ‘dvark’, and their corresponding leaves in a partially
illustrated MHT.

1) Phase 1: Setup

Data owners initiate the scheme by firstly generating a suffix
array from the string or text file that their wishes to make avail-
able for querying. They then build HCSI digests over the suffix-
es in the string. The HCSI digests for each suffix are then or-
dered according to the suffix array indexes and an MHT is con-
structed over them. The data owners then sign the MHT root
with their private keys and upload the string to the server.
They also transmit their public keys to the users. They may op-
tionally discard the string, the suffix array, and the MHT. Algo-
rithm 2 illustrates this phase.

Algorithm 2: Setup

Input: Sv Sk[)()
sa <— BuildSA(S);

foreach sfx < (S) SM (] 5\))) do
v, < HCSI(sfx);

end

mht <— BuildMHT (v1,...,vn);

Ry, < sign(sk ,, R);

Upload(S,R);

/* The following is optional */

Delete(S, sa, mht);

Fig. 3 shows an example of the MHT constructed from the
HCSI digests for the string ‘aardvark *. We will make use of
Fig. 3 in running examples with the descriptions of the upcom-

ing phases to provide some intuition as to how the scheme
works.

2) Phase 2: Query

A user U submits to CS a query Q to check if substring x ex-
ists in string S. In our running example, the user submits a two
different queries (to illustrate both positive and negative verifi-
cation): * %dva%’ and * %are%’ .

3) Phase 3: Query Response

The cloud server receives a query from the user, to check for
the existence of a substring in the stored string. The server con-
structs the HCSI digests on the suffixes of the stored string,
and then proceeds to construct an MHT on the HCSI digests.
This is identical to the data owner’ s processing in Phase 1.
The server then searches for the substring in the suffix array.
The result of the search returns one position from the suffix ar-
ray if the substring was found, otherwise it returns two posi-
tions. If the substring was found, then the position returned is
that of the matching suffix i.e. the substring is a prefix of the
suffix at that position. If the substring was not found, then the
two positions returned will be immediate neighbours. The first
is the position of the suffix that is lexicographically smaller
than the substring being sought, and the second is the position
of the suffix that is lexicographically bigger. For each suffix re-
turned, B is then calculated as shown in Definition 4.7. If the
substring was found, the result is Y, otherwise it is N. The re-
sult is sent back to the client with the following verification da-
ta for the position(s) returned from the suffix array search: the
position itself (1), the value of the suffix array at that position
(), the HCSI digest at position 8 + 1 (), and the verification
path of the leaf for the corresponding position to the root of the
MHT. In the case of a non-matching result, the first non-match-
ing character position in the string (), and the character at po-
sition B (Sg) is also sent back to the user. This phase is shown
in Algorithm 3.

Root
1234 5678
/
12 34 56 78
L1 1.2 L3 14 L5 L6 1.7/ L8
e e T T jus o o= =
(@] (@] o o (@) (@) (@) (@)
n w0 w w 75 w N N
&\ o o = =~ = =L <
g £ %X & < F = E
& - e
a = 2 6 4 8 3 7 5

HCSI: hash chains with sequential indexing

AFigure 3. An example of the MHT constructed from the HCSI digests
for the string ‘aardvark’.

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P6

Special Topic N

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

Algorithm 3: Query Response

Input: Q(x)
sa <— BuildSA(S);

foreach sfx<— (S suff (sas) leg[/.(.sa\(\S\)))
v, <= HCSI(sfx);

do

end
mht<— BUI]dMHT(Ula o '71}” o
r < IsSubstringOf{ x,S,sa);
if .Y then /* substring was found */
o < salt); y < HCSI(SMM); V—{i,a,v};
N < GetSinglePathSiblings(v;,mht);
else/* substring was not found */
o, <=sal); B oy +1x =1y, HHCS[(S(I,H;-A);
a, —sa(i,); B, —a, +I¥| =15y, < HCSIS, , .);

Ve {il,Otl,,Bl,Sﬁl,y,,i,,a,,,B,,SB/,y,_};

N < GetRangePathSiblings(v,»v,,mht),
end

VO < BuildVO(V,N),

Respond(r, VO);

To generate the VO for the query “%dva% in our running
example, the server searches for the prefix ‘dva’ in the suffix
array, and finds the corresponding match in L4 (Fig. 3). The
server sets a = 4, y = HCSI(‘rk), and chooses the verification
path for L4, corresponding to leaf L3, and internal nodes 1, 2,
5,6, 7, and 8. a, vy. The verification path is then sent along
with the response of the query (Y) to the user. To process the
query ‘%are%’, the server searches for the prefix ‘are " in the
suffix array. The prefix is not found, so the neighbouring suffix-
es that are lexicographically less than and greater than ‘are’
are selected, corresponding to leaves 1.2 and L3. The server
sets =2, 8=4,S;=‘d’, and y = HCSI(" vark ’) for L2, and
a=6,8=28,S,=k’, and vy = null for L3. The server then
chooses the verification path for L2 and L3, which is leaves L1
and 14, and internal node 5, 6, 7, and 8. The HCSI variables
and verification path is finally sent to the user.

4) Phase 4: Verification

Upon receiving the query response from the server, the user
ensures that a proof has been provided, otherwise he rejects
the response. The user retrieves the latest root from the data
owner, and verifies the root using the owner’ s public key. If
the query response from the server was Y, he reconstructs the
HCSI for the leaf at position 7 in the MHT using the reconstruc-
tion algorithm (Algorithm 1). He then uses the reconstructed
leaf in conjunction with the verification path (sent by the serv-
er), to generate the MHT root. He compares the generated root
with the root from the data owner. If the two roots match, he ac-
cepts the results as being correct, otherwise the result is reject-
ed. If the query response was N, the user firstly checks that the

June 2016 Vol.14 No.SO ZTE COMMUNICATIONS ' 15

B Special Topic

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

positions of the two suffixes returned by the server are neigh-
bouring i.e. the left suffix position is one less than the right suf-
fix position. This is to ensure that the server has not returned
two suffixes which have suffixes in-between them, one or more
of which may be suffixes that are matches for the substring. If
the two positions are not neighbouring, the result is rejected.
The user then constructs ¥ for each position, by using the first
B—a characters from the query substring, and appending Sgto
it. Doing this allows him to reconstruct the partial suffixes for
each position to the character that is the first non - matching
character when compared to the query substring. He confirms
that each is lexicographically smaller and larger than the query
substring. If this is not the case, the result is rejected. This al-
lows the user to ensure that the server has not simply returned
two arbitrary neighbouring positions that do not in fact lexico-
graphically border the query substring, thereby not allowing
the user to confirm that the position at which the substring may
be found but in fact doesn’t exist. He then generates the HCSI
digests for each suffix position using 7, @, B, S and y (Algo-
rithm 1). He uses the reconstructed leaf for each suffix position
in conjunction with the verification path (sent by the server), to
generate the MHT root. He then compares the generated root
with the root from the data owner. If the two roots match, he ac-
cepts the results as being correct, otherwise the result is reject-
ed. The verification process is outlined in Algorithm 4.

Algorithm 4: Query verification

Input: QR, VO
Retrieve Ryofrom DO;
if verify(pkvo, Rno) == false then /* Ry verification failed */
reject,
end
if QR. Y then /* substring found */
h < ReconstructHCSIVO);
R < GenerateMHTRoot(V O, h);
else/* substring not found */
h, «<— ReconstructHCSIVO);
h, < ReconstructHCSIVO);
X %pg /) Spi X, Xop o /) Sgs
if (El =x) | (Er <x) then

reject,
end
R < GenerateMHTRoot(V O, h;,h.);
end
if R # Rnoil then
reject,
end

In our running example, U receives the response Y to the
query ‘%dva%’ . To verify the correctness of the response, he
processes the VO, also from CS, as follows: he regenerates 1.4
using the query ‘dva’, @ and v, by calculating h(a || ‘d’ || h

16 ' ZTE COMMUNICATIONS = June 2016 Vol.14 No.SO

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P7

(@+1 | v || h(w+2 || “a’ | 7)) =HCSI(‘dvark’). He
then regenerates the MHT root using the verification path pro-
vided by CS, and the checks against the signed root are provid-
ed by DO to ensure the generated root is correct. To verify the
correctness of the second query, U runs through a similar pro-
cess, but in this case, he additionally uses S; to regenerate
leaves 1.2 and L3. This is because the query literal ‘are’ only
partially matches the suffixes corresponding to leaves L2 and
L4, and S for each suffix allows U to correctly construct each
individual leaf using both part of the query and S;. After recon-
structing the leaves, he uses the verification path to recon-
struct the root and checks against DO as a final step.
5) Phase 5: Update

In order to facilitate updates, the data owner simply exe-
cutes the setup phase with a newer version of string S. This
would generate a new MHT root that would then be used by the
user to verify queries on the new string S.

5 Asymptotic Performance Analysis

We provide a brief outline of the space and time complexi-
ties achievable for both our scheme.

Table 4 shows a comparison of the complexities for the
DAG scheme proposed in [1] and our scheme. The DO pre-pro-
cessing phase in our scheme incurs a quarter of the storage
cost of that incurred by the DAG scheme. This is not surpris-
ing as the underlying suffix arrays used in our scheme has a
similar advantage over suffix trees in general. Although this ad-
vantage is in the constant factor, it in fact is a considerable ad-
vantage, and can mean the difference between a practically fea-
sible or non-feasible solution. A similar advantage is incurred
in the server query response phase, due to the fact that the
server goes through a similar proof construction phase initially
as that performed by the DO pre - processing phase. The VO
size is small for the DAG scheme, but it increases to n as m ap-
proaches n. However, with our scheme, the size is always con-
stantly relative to log n regardless of the size of m. This means

VY Table 4. Space and time complexities for our scheme

Measure Reference [1] Our scheme
Detect false +ve Y Y
Detect false -ve N Y

DAG, compacted suffix tree
and Hashing

Technique used MHT and suffix arrays

DO preproc. 0Q20n) + 02n—)H O5n) + 02n— 1)H

Server qry resp. O20n) + O3m) + O2n— 1)H O(5n+ (m+ 2)log n) + O2n — 1)H
O(m+ kH Olog n+ mH

User verification

VO size O(m + k) O3 + 2logn)

In string searching theory, research papers provide asymptotic constants due to their
impact on practical algorithms, and thus we also include them to allow greater preci-

sion for others when comparing our results to other work.

MHT: Merkle Hash Tree DAG: Directed Acyclic Graph

that the size of the VO under large m is smaller in our scheme
by a log factor.

6 Empirical Evaluation
In this section, we evaluate the experiments conducted on a
prototype of our proposed scheme in this section.

6.1 Experiment Setup

1) Client configuration: The client module was hosted and exe-
cuted on a Toshiba Satellite Ultrabook U920t running Linux
Ubuntu 14.04 LTS 64 -bit, with 3.8 GiB RAM, 247.8 GB
SSD and Intel ® Core™i5-3337U CPU @ 1.80GHz x 4 proces-
sor.

2) Server configuration: The server module was run on a VM-
ware 30 vCPU 64GB RAM CentOS 6 Linux virtual machine,
which was hosted on a cluster of 19 physical servers.

3) Experiment parameters: RSA was used as the owner’s signa-
ture mechanism, and the secret and public keys were gener-
ated with 2048-bits as the security parameter. The same con-
struction was used to generate the server’s secret and pub-
lic keys. SHA256 was used to generate hashes for the MHT,
with the digest truncated to 160 bits.

4) Prototype implementation: The prototype was implemented
in C++ on both the client and server machines. Coding was
initially performed on a Windows 8.1 machine with Visual
Studio 2010, and was then ported to the client running on
Ubuntu 14.04 with CodeBlocks 13.12 and GNU C++ 4.8.2.
The suffix array construction algorithm was sourced from Iib-
divsufsort that has been shown to be very efficient compared
to other implementations [31]. Cryptographic functions for
hashing and signatures were sourced from OpenSSL 1.0.1g.
The owner - generated SA and MHT were made persistent
and stored to disk (rather than temporarily creating and de-
stroying them in memory) and ’ uploaded’ to the server
along with the data file to facilitate query processing. From
an experimental point-of-view, this facilitated ease-of-use
with respect to avoiding running the same process again on
the server. In practice, the server would probably re-gener-
ate both the SA and MHT independently, however this is not
a requirement for the scheme to work securely. Either option
(i.e. uploading the SA and MHT to the server, or indepen-
dently re - generating them at the server) may be taken in
practice. Consequently, the entire MHT is not loaded into
memory (due to its size) by the server when processing que-
ries. Rather, the appropriate nodes in the MHT are loaded
as and when needed by the server during the VO generation
phase. This serves two purposes: 1) to avoid using up large
amounts of memory that could otherwise be used by other
processes on the server, and 2) to reduce the overhead in
loading the entire MHT into memory when queries are being
processed. VOs are essentially realised as text files with an
XML-like structure, without the end tags. This allows the cli-

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P8

Special Topic N

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

ent to recognise and parse the data in the VO in a straight-

forward manner.

5) Datasets: The datasets comprise of a total of five files. Three
of the files were taken from the Large Canterbury Corpus
[32], and two were sourced from the NCBI [33]:
® k.coli: Complete genome of the E. Coli bacterium, size 4,

638,690 b
® bible: The King James version of the bible, size 4,047,392 b
® world192: The CIA world fact book, size 2,473,400 b
® human: Chromosome 10 from human genome data, size
128,985,118 b

® hu_combined: A concatenation of chromosomes 1, 3, 5, 6,
9, and 11 from human genome data to form an approxi-
mately 1 GB file, size 1,000,003,018 b.

6) Query workload: Contiguous fragments of size 10,000 to 100,
000 characters in 10,000 character increments, and from
100,000 to 1,000,000 characters in 100,000 character incre-
ments were taken from each dataset at randomly selected po-
sitions. This produced 19 query strings ranging in sizes from
10,000 characters to 1,000,000 characters for each dataset.
The 19 query strings were then submitted to the server in as-
cending size order from the smallest query (10,000 charac-
ters) to the largest query (1,000,000 characters). The queries
were processed by the server synchronously, with the query
result, VO generation, and query verification for each query
being performed prior to submission of the subsequent que-
ry. This series of 19 queries per dataset was repeated for a
total of 30 runs per dataset to get 30 results for each individ-
ual query.

The query execution time, VO generation time, VO size and
verification times were measured for each query and recorded.
Averages of each of these recordings were taken for each query/
dataset combinations to produce the final results as shown in
the upcoming graphs.

6.2 Query Execution Times

Our research focuses on the verification of substring que-
ries, and not the querying itself. However, we have included
the query execution times as part of the results to provide a
more holistic view of the implementation of the scheme. Due to
the fact that the data file is not loaded into memory prior to
query execution, the execution times are affected by the hits
and misses due to caching. For this reason, we find that the re-
sulting graph, in Fig. 4, produces slightly varying times. The
size of the data file determines the difference in finding que-
ries between files of different sizes, and so we note that the da-
ta file queries to bible, world192, and E.coli perform better on
the whole than the queries to human and hu_combined. In par-
ticular, queries to the hu_combined data file takes more than
10 seconds to execute due to its comparatively larger size
(I GB) than the other data files. We also note that regardless
of the query size, the query execution times remain relatively
similar for queries executed on individual data files. This is ex-

June 2016 Vol.14 No.SO ZTE COMMUNICATIONS = 17

B Special Topic

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

oo hre—ede— bR (Ay e S ,‘-—A_‘M
1+
- —&— L.coli
= =<~ bible
g —{ = hu_combined
= —o#= human
0.1F il world192

107 - I 1

Query size (characters)

100

-
T

A
A A <k "*‘\. /
pami A TN
e " :
© ey’ ¥a
g 01k A -" —o— L.coli
= —{=-bible
E — 3+ hu_combined
—A-- human
k- world192
0.01 -
o

e

10* 10° 10°

Query size (characters)

A Figure 4. Query execution times for the SA-MHT prototype.

plained by the fact that a binary search is performed for each
query, and occupies log n + m time for each query, resulting in
fairly similar times regardless of the query size.

6.3 VO Generation Time

The VO generation time is the time the SA-MHT prototype
takes for the server to generate VOs for any given query. This
time is incurred in addition to the query execution time and
from the server’s perspective. It is the cosl of participating in
the verification scheme per query. The results, shown in Fig.
S, indicate a range from 3 ms for the shorter queries to 15 ms
for longer queries for the bible, world192, and E.coli data files.
The human data file queries show a range VO generation times
from 85 ms to 469 ms, whilst the hucombined data file shows a
range from 230 ms to 2.864 s. The generation time of all VOs
tends to move towards the respective upper bounds of their in-
dividual ranges as the query sizes increase. The outliers at 10,
000 characters for the human data file, and 10,300 characters
for the hu_combined data file could be due to cache hits as
well. The VO generation phase reads the verification path
nodes of the MHT from disk, node-by-node, and as such is also
affected by the cache.

6.4 VO Sizes

The VO sizes seem to be bounded to a fairly constant range
for each of the data files, as shown in Fig. 6. The VO sizes for
the bible, world192, and E.coli data files seem to share a simi-
lar range of values between 4.8 KB to 5.6 KB, and this is due
to the possible number of nodes in the verification path for
each suffix, which is bounded by O(log n). It is worth noting
that the log n bound is reflected by the jump from the lower
three data files, which have almost the same log n bounds, to
the human data file, which has a higher log n bound (ranging
between 6.3 KB and 6.5 KB), and then another jump to the

18 ' ZTE COMMUNICATIONS = June 2016 Vol.14 No.SO

D:\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P9

AFigure 5. VO generation time for the SA-MHT prototype.

8000

tmmm-—r—ttG—_lG—_L_3—_L7— l\
7000 - C

VO Size (bytes)

5000

—@— E.coli

=< hible

= hu_combined
~ -+ human

i world192

4000 . - . | i
0 2x10° 4x10° 6x10° 8x10° 10°

Query size (characters)

AFigure 6. VO sizes for the SA-MHT prototype.

hu_combined data file VO sizes which has an even higher log
n bound (ranging between 7 KB and 7.2 KB). The deviations
from the otherwise constant values are due to fewer verification
path nodes being generated for MHT nodes that happen to lie
at the end of a level without a sibling (i.e. it is the end node of
a level that has an odd number of nodes). In such a case, the
node is not included in the verification path, and is simply pro-
moted to the previous levels until a sibling is found. This re-
sults in fewer verification path nodes for that verification path
compared to the verification path of nodes that have siblings.

6.5 Query Verification Time

Fig. 7 shows the query verification time incurred by the cli-
ent. The initial observation is that regardless of data file size,
the verification time for different query sizes are virtually the

10
>
< l -
E —8— E.coli
= ==+ bible
—{ = hu_combined
—oe-- human
e world192
0. l L L L L J
0 2x10° 4x10° 6x10° 8x10° 10°
Query size (characters)

AFigure 7. Query verification time for the SA-MHT prototype.

same. This is a reflection of the relatively constant sizes of the
VO and the fact that the difference amongst the sizes of the
VOs for different data files is less than 2 KB (Fig. 6). The que-
ry size is the determining factor and this can be seen through
the rise of the curve as the query sizes increase. This is a re-
sult of the number of hashes performed by the client, the maxi-
mum of which is the size of the query per suffix being verified.

6.6 Discussion on Experiment Results

The experiments on the prototype have shown promising re-
sults on the whole. The additional time spent by the server in
generating the VO is largely a fraction of the query execution
time, and in practice would be unnoticeable by the client. Ad-
ditionally, the size of the VO is also fairly constant and does
not appear to be affected much by the size of the query. The da-
ta file size causes the VO to increase, but only by a couple of
kilobytes for a data file increase from 4 MB to 1 GB. Finally,
the client-side verification incurs less than a second of process-
ing time for query sizes of up to 100,000 characters, which is a
large query for most applications. Larger query sizes incur
more times, and are a function of the size of the query, but may
still be considered usable in practice.

7 Conclusions and Future Work

We have presented an existential substring query verifica-
tion scheme that meets the properties of authenticity, complete-
ness and freshness. The scheme allows consumers to query for
the existence of arbitrary substrings that are not restricted to
keyword searches only, and provides verification objects with
the results as proofs of correctness. Our scheme is based on
suffix arrays, and provides improvements in the space and pro-
cessing time in comparison to the only other comparable
scheme proposed in [1]. Our scheme also provides consistently

DA\EMAG\2016-06-51/VOL13\F2.VFT——11PPS/P10

Special Topic N

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

smaller VOs for large substring matches compared to the
scheme proposed in [1]. The experiment results on a fully func-
tioning prototype are promising for the applicability of our
scheme to appropriate applications on the cloud.

References

[1] C. Martel, G. Nuckolls, P. Devanbu, et al., “A general model for authenticated
data structures,” Algorithmica, vol. 39, no. 1, pp. 21— 41, Jan. 2004. doi:
10.1007/500453-003-1076-8.

[2] Wikipedia. (2015 March). Agglutination [Online]. Available: http://en.wikipedia.
org/w/index.php?title=Agglutination&oldid=648155093

[3] G. Ateniese, R. Burns, R. Curtmola, et al., “Provable data possession at untrust-
ed stores,” in Proc. 14th ACM Conference on Computer and Communications Se-
curily, Alexandria, USA, 2007, pp. 598-609. doi: 10.1145/1315245.1315318.

[4] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient
provable data possession,” in Proc. 4th International Conference on Security and
Privacy in Communication Networks, Istanbul, Turkey, Article 9, 2008, pp. 9:1—
9:10. doi: 10.1145/1460877.1460889.

[5] A. Juels and B. S. Kaliski, “PORS: proofs of retrievability for large files,” in
Proc. 14th ACM Conference on Computer and Communications Securily, Alexan-
dria, USA, 2007, pp. 584-597. doi: 10.1145/1315245.1315317.

[6] T. S. J. Schwarz and E. L. Miller, “Store, forget, and check: using algebraic signa-
tures to check remotely administered storage,” in 26th IEEE International Con-
ference on Distributed Computing Systems, Lisboa, Portugal, 2006, pp. 12—12.
doi: 10.1109/1CDCS.2006.80.

[7] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic authenticated in-
dex structures for outsourced databases,” in Proc. 2006 ACM SIGMOD Interna-
tional Conference on Management of Data, Chicago, USA, 2006, pp. 121-132.
doi: 10.1145/1142473.1142488.

[8] E. Mykletun, M. Narasimha, and G. Tsudik, “Providing authentication and integ-
rity in outsourced databases using merkle hash trees,” UCI-SCONCE Technical
Report, 2003.

[9] M. Narasimha and G. Tsudik, “DSAC: integrity for outsourced databases with sig-
nature aggregation and chaining,” in Proc. 14th ACM International Conference
on Information and Knowledge Management, Bremen, Germany, 2005, pp. 235-
236. doi: 10.1145/1099554.1099604.

[10] H. Pang and K.-L. Tan, “Verifying completeness of relational query answers
from online servers,” ACM Transactions on Information and System Security,
vol. 11, no. 2, Article 5, Mar. 2008. doi: 10.1145/1330332.1330337.

[11] Q. Zheng, S. Xu, and G. Ateniese, “Efficient query integrity for outsourced dy-
namic databases,” in Proc. 2012 ACM Workshop on Cloud Computing Security
Workshop, Raleigh, USA, 2012, pp. 71-82. doi: 10.1145/2381913.2381927.

[12] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially materialized digest
scheme: an efficient verification method for outsourced databases,” The VLDB
Journal, vol. 18, no. 1, pp. 363-381, Jan. 2009. doi: 10.1007/s00778-008-0108
=Z.

[13] S. Singh and S. Prabhakar, “Ensuring correctness over untrusted private data-
base,” in Proc. 11th International Conference on Extending Database Technolo-
gy: Advances in Database Technology, Nantes, France, 2008, pp. 476—486.
doi: 10.1145/1353343.1353402.

[14] M. T. Goodrich, R. Tamassia, and N. Triandopoulos, “Super-efficient verifica-
tion of dynamic outsourced databases,” in Proc. The Cryptopgraphers” Track at
the RSA conference on Topics in Cryptology (CT-RSA’08), San Francisco,
USA, Apr. 2008, pp. 407-424. doi: 10.1007/978-3-540-79263-5_26.

[15] M. Noferesti, M. A. Hadavi, and R. Jalili, “A signature-based approach of cor-
rectness assurance in data outsourcing scenarios,” Information Systems Securi-
ty, vol. 7093, S. Jajodia and C. Mazumdar, Eds. Germany: Springer Berlin Hei-
delberg, 2011, pp. 374-378. doi: 10.1007/978-3-642-25560-1_26.

[16] T. K. Dang, “Ensuring correctness, completeness, and freshness for outsourced
tree-indexed data,” Information Resources Management Journal, vol. 21, no. 1,
pp- 59-76, Jan. 2008. doi: 10.4018/irmj.2008010104.

[17] M. Narasimha and G. Tsudik, “Authentication of outsourced databases using
signature aggregation and chaining,” in Proc. 11th International Conference on
Database Systems for Advanced Applications (DASFAA’ 06), Singapore, Apr.
2006, pp. 420-436. doi: 10.1007/1173383630.

[18] M. Xie, H. Wang, J. Yin, and X. Meng, “Providing freshness guarantees for out-

June 2016 Vol.14 No.SO ZTE COMMUNICATIONS ' 19

B Special Topic

Verification of Substring Searches on the Untrusted Cloud
Faizal Riaz-ud-Din and Robin Doss

sourced databases,” in Proc. 11th International Conference on Extending Data-
base Technology: Advances in Database Technology (EDBT °08), New York,
USA, 2008, pp. 323-332. doi: 10.1145/1353343.1353384.

[19] R. Jain and S. Prabhakar, “Trustworthy data from untrusted databases,” in
IEEE 29th International Conference on Data Engineering (ICDE), Brisbane,
Australia, Apr. 2013, pp. 529-540. doi: 10.1109/ICDE.2013.6544853.

[20] Y. Zhou and C. Wang, “A query verification method for making outsourced da-
tabases trustworthy,” in IEEE Ninth International Conference on Services Com-
puting (SCC), Honolulu, USA, Jun. 2012, pp. 298- 305. doi: 10.1109/
SCC.2012.63.

[21] G. Nuckolls, “Verified query results from hybrid authentication trees,” in Data
and Applications Security XIX, vol. 3654, S. Jajodia and D. Wijesekera, Eds.
Springer Berlin Heidelberg, 2005, pp. 84-98. doi: 10.1007/11535706_7.

[22] B. Palazzi, M. Pizzonia, and S. Pucacco, “Query Racing: Fast Completeness
Certification of Query Results,” in Data and Applications Security and Privacy
XXIV, vol. 6166, S. Foresti and S. Jajodia, Eds. Germany: Springer Berlin Hei-
delberg, 2010, pp. 177-192. doi: 10.1007/978-3-642-13739-6_12.

[23] H. Pang and K. Mouratidis. “Authenticating the query results of text search en-
gines,” Proc. VLDB Endow., vol. 1, no. 1, pp. 126 - 137, Aug. 2008. doi:
10.14778/1453856.1453875.

[24] M. T. Goodrich, C. Papamanthou, D. Nguyen, et al., “Efficient verification of
web-content searching through authenticated web crawlers,” Proc. VLDB En-
dow., vol. 5, no. 10, pp. 920-931, Jun. 2012. doi: 10.14778/2336664.2336666

[25] R. Rivest, “The MD5 message-digest algorithm,” IETF RFC1321, 1992.

[26] Secure Hash Standard, Federal Information Processing Standard (FIPS), FIPS
180-2, Aug. 2002.

[27] Secure Hash Standard, Federal Information Processing Standard (FIPS), FIPS
180-4, Mar. 2012.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Communications of the ACM, vol. 21, no.
2, pp. 120-126, Feb. 1978. doi: 10.1145/359340.359342.

[29] R. C. Merkle, “Protocols for public key cryptosystems,” in IEEE Symposium on
Security and Privacy, Oakland, USA, Apr. 1980, pp. 122-134. doi: 10.1109/
SP.1980.10006.

[30] M. T. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an authenti-
cated dictionary with skip lists and commutative hashing,” in DARPA Informa-
tion Survivability Conference & Exposition II, Anaheim, USA, Jun. 2001. pp.
68-82. doi: 10.1109/DISCEX.2001.932160.

[31] Y. Mori. (2014). The Benchmark Results of Implementations of Various, Latest
Suffix Array Construction Algorithms [online]. Available: https://code.google.
com/p/libdivsufsort/wiki/SACABenchmarks

[32] T. Bell. (2014). The Large Canterbury Corpus [online]. Available: http://corpus.
canterbury.ac.nz/descriptions/#large

[33] National Center for Biotechnology Information. (2014). Homo-Sapien Genome
[online]. Available: ftp:/ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/

Manuscript received: 2016-04-09

W Biographies |

Faizal Riaz-ud-Din (faizal.din@ieee.org) has a background in database and software
development. He has been working in academia as well as in industry for a number
of years and is currently pursuing a doctorate part-time. His interests lie in the area
of query verification in databases and text-based data on the cloud.

Robin Doss (robin.doss@deakin.edu.au) received the BEng from the University of
Madras, India, in 1999, and the MEng and PhD degrees from the Royal Melbourne
Institute of Technology (RMIT), Australia, in 2000 and 2004, respectively. He has
held professional appointments with Ericsson Australia, RMIT University, and IBM
Research, Switzerland. He joined Deakin University, Australia, in 2003, and is cur-
rently a senior lecturer in computing. Since 2003, he has published more than 50
papers in refereed international journals, international conference proceedings and
technical reports for industry and government. His current research interests are in
the broad areas of communication systems, protocol design, wireless networks, secu-
rity and privacy. He is a member of the IEEE.

AN

Roundup

Introduction to ZTE Communications

o,
L
ety

ZTE Communications is a quarterly, peer - reviewed international technical journal

2T S ISSN 1673— 5188 and CODEN ZCTOAK) sponsored by ZTE Corporation, a major
“ ECOMMUN[cATIONs () sp y p j

<o,

international provider of telecommunications, enterprise and consumer technology

solutions for the Mobile Internet. The journal publishes original academic papers and

ment . > o o o o ° o
Mecaton S5y angp research findings on the whole range of communications topics, includin,
iro, cy in o

™ communications and information system design, optical fiber and electro - optical
engineering, microwave technology, radio wave propagation, antenna engineering,
electromagnetics, signal and image processing, and power engineering. The journal is
designed to be an integrated forum for university academics and industry researchers
from around the world. ZTE Communications was founded in 2003 and has a readership
of 5500. The English version is distributed to universities, colleges, and research
institutes in more than 140 countries. It is listed in Inspec, Cambridge Scientific
Abstracts (CSA), Index of Copernicus (IC), Ulrich’ s Periodicals Directory, Norwegian
Social Science Data Services (NSD), Chinese Journal Fulltext Databases, Wanfang
Data — Digital Periodicals, and China Science and Technology Journal Database. Each
issue of ZTE Communications is based around a Special Topic, and past issues have

attracted contributions from leading international experts in their fields.

20 | ZTE COMMUNICATIONS =~ June 2016 Vol.14 No.SO

| DA\EMAG\2016-06-51/NVOL13\F2.VFT——11PPS/P 11

