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摘要：针对数字副载波复用光纤通感融合（DSM-ISAC）系统中相干探测型相位敏感光时域反射仪（Φ-OTDR）因干涉衰落导致传感性能劣化

和可靠性下降的挑战，提出了一种接收端多域集成数字信号处理衰落抑制方案。通过在接收端引入相位域的相移变换（PST）、频率域的脉冲内

频分（IFD）和空间域的移动旋转矢量平均（MRVA），实现对干涉衰落的协同抑制。为了验证所提方案的有效性，搭建了 DSM-ISAC 实验平

台，利用 DSM 信号的频谱灵活分配特点来优化子载波间保护间隔，在同一波长信道中生成 36 GBaud DP-16QAM DSM 通信信号与线性调频

（LFM）脉冲传感信号，并经过 920 m 标准单模光纤传输，完成了对系统干涉衰落抑制的实验验证。与传统干涉衰落抑制方案相比，所提出的

PST-IFD-MRVA 方案可显著抑制干涉衰落，提高强度信噪比近10 dB且增强应变灵敏度到9.09 pε/√Hz，成功解调出施加于光纤820 m处的10 kHz扰

动信号。实验结果表明该研究方案在提升DSM-ISAC系统的传感可靠性方面具有可行性。

关键词：光纤通感融合系统；数字副载波复用；相位敏感光时域反射仪；干涉衰落抑制

Abstract: As for fiber-optics integrated sensing and communication systems enabled by digital subcarrier multiplexing (DSM-ISAC), the 
coherent-detection based phase-sensitive optical time-domain reflectometer (Φ-OTDR) suffers from impaired sensing performance and in⁃
sufficient reliability due to the interference fading effect. A receiver-side multi-domain integrated fading suppression scheme is proposed. 
Our proposed scheme sequentially applies phase shift transformation (PST) in the phase domain, inner-pulse frequency division (IFD) in the 
frequency domain, and moving rotation vector averaging (MRVA) in the spatial domain to achieve joint suppression of interference fading. To 
verify its performance,  a DSM-ISAC experimental platform is established. Leveraging the flexibility of spectral allocation in DSM signals, a 
36 GBaud DP-16QAM DSM communication signal and a linear frequency modulated (LFM) pulse sensing signal are generated within the 
same wavelength channel and co-propagated over 920 m of standard single-mode fiber (SSMF), with an optimized protection interval band⁃
width between the two central subcarriers. Experimental results indicate that, in comparison with conventional suppression schemes, the 
proposed PST-IFD-MRVA scheme significantly enhances fading suppression performance, achieving an improvement in signal-to-noise ra⁃
tio of nearly 10 dB and a strain sensitivity of 9.09 pε/√Hz. Meanwhile, a 10 kHz vibration signal applied at the position of 820 m of SSMF is⁃
successfully demodulated. These findings validate the feasibility and promising potential of the proposed scheme in enhancing the sensing 
reliability of DSM-ISAC systems.

Keywords: fiber-optics integrated sensing and communication; digital subcarrier multiplexing; phase-sensitive optical time-domain reflec⁃
tometer; interference fading suppression
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光纤通信系统作为现代信息社会的基础承载设施，凭借

低损耗、超宽带和抗干扰等优越传输特性，在全球范

围内得到广泛部署。目前光纤光缆铺设总长度已超过 5×

108 km，构建了覆盖全球的通信网络。与此同时，分布式光

纤传感技术不仅赋予光纤信息传输能力，还能对温度、振

动、应变等环境参数进行高精度分布式监测，具备对外界扰

动的实时感知与智能监控能力[1]。由于高速光纤通信与分布

式光纤传感在信号调制、复用和探测方式等方面具有高度相

似性，利用同一根光纤实现兼具通信与感知功能的通感融合

（ISAC） 系统逐渐成为全球研究热点，被视为信息光子技术

的重要发展方向。

现有光纤通感融合系统主要包括两类：基于前向通信信

号的通感融合系统和基于瑞利背向散射 （RBS） [4]的通感融

合系统。前者利用前向传输信号完成通信功能，并通过相干

接收解调相位[2]和偏振态[3]信息实现环境扰动感知，但该方

案依赖于整条光纤链路的相位累积或偏振演化信息，难以实

现多扰动事件的同时定位，且定位精度有限。相比而言，基

于 RBS[4]的通感融合系统通常采用相位敏感光时域反射仪

（Φ-OTDR） 实现环境扰动定位，能够区分同时发生的多个

事件，具备定位精度高、感知灵敏度高、单端接入和无需时

间同步等性能优势。为降低通信与感知信号间的干扰并提升

频谱利用率，基于 RBS 的共波长信道数字副载波复用光纤通

感融合 （DSM-ISAC） [5-6]架构近年来受到广泛关注。

相干探测[7]是长距离感知的关键技术。本振光 （LO） 与

RBS 混频后，可提高 RBS 信噪比，

增强感知灵敏度。然而，相干探测

同时面临偏振衰落和干涉衰落的问

题。偏振衰落源于 LO 与 RBS 的偏

振态失配，目前业界通常采用偏振

分集接收技术[8]进行抑制。干涉衰

落则源于光纤的非均匀折射率分布

对 RBS 相位的随机调制[9]，当大量

散射体产生的 RBS 发生干涉相消

时，会形成信号衰落点。在这些低

信噪比区域，解调出相位信息误差

大 ， 扰 动 信 息 失 真 ， 继 而 引 发

ISAC 系统漏报或误报，严重限制

了系统可靠性。

本文在数字副载波复用光纤通感融合系统框架下，针对

相干探测 Φ-OTDR 的干涉衰落问题开展了干涉衰落抑制研

究，提出了一种接收端多域集成数字信号处理衰落抑制方

案，并进行了系统参数优化，最终完成了实验验证和衰落抑

制性能对比分析。

1 数字副载波复用光纤通感融合系统

DSM 技术不仅因其子载波的灵活可调而天然适用于信

号 复 用 ， 还 对 光 纤 非 线 性 效 应 及 均 衡 增 强 相 位 噪 声

（EEPN） [10]表现出高容忍度，从而保障了通信链路的稳定性

和鲁棒性。在传感方面，为克服传统 Φ-OTDR 中空间分辨

率与脉冲宽度之间的性能制约，采用线性调频脉冲 （LFM）

结合匹配滤波 （MF） 脉冲压缩技术，以同时实现高空间分

辨率与长距离探测能力[11]。

1.1 通感融合信号产生

如图 1 所示，DSM 通信信号由多个灵活可调的子载波构

成，在中间相邻两个子载波之间预留保护间隔，并插入窄带

传感信号，从而实现共波长信道的通感融合信号一体化。发

射端 DSM 通信信号的电场表达式为：

SDSM( t) = ∑k = 1
NSC sk( t) ⋅ exp j (2πfk t) （1），

其中，Nsc 为子载波数目，sk( t)为第 k 个子载波基带信号，fk
为第 k 个子载波中心频率。

发射端产生的调频脉冲传感信号SCP( t)可表示为：
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划”引进创新创业团队项目（2021ZT09X044） 图 1 基于数字副载波复用的通感融合信号产生
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SCP( t) = exp j (2πf0 t + πkt2 ) ⋅ rect ( tτp ) （2），

其中，f0 为起始频率，k = B/τp为调频速率，B为调频带宽，

τp为脉冲持续时间。

经过频分复用后可以得到通感融合光信号 SISAC( t)的表

达式为：

SISAC( t) = [SCP( t) + SDSM( t) ] ⋅ exp j (2πfc t) （3），

其中，fc为光载波中心频率。

1.2 通感融合信号接收

经过单模光纤前向传输后，通感融合信号首先进入高速

相干接收机，通过数字域窄带滤波完成通感信号分离，最后

通过数字均衡，恢复出通信信号。携带了外界扰动信息的

RBS 光信号经环形器到达传感信号接收端。背向 ISAC 信号

经过滤波器滤除通信信号以及放大自发辐射 （ASE） 噪声，

得到调频脉冲对应的背向散射信号。在相干探测方案中，

RBS 表示为：

ERBS( t) = ∑
i = 1

N

r (i)exp ( - α cτin )exp [ j [2π( fc + f0 ) ( t -

τi ) + πk ( t - τi )2 ] ] rect ( t - τi
Tp ) （4），

其中，N 为整个光纤链路的散射点数，r (i) 为瑞利散射系数，

α为光纤损耗系数，τi为光从第 i 个散射点返回到传输接收

端的飞行时间，c 为真空中的光速，n 为纤芯折射率，本振

光的光场表达式为：

 ELO( t) = PLO exp j (2πfc t) （5）。

背向散射光与本振光拍频后的电信号表达式为：

I ( t ) = R∑
i = 1

N

r (i) exp ( - α cτin ) cos [2πf0 ( t - τi ) +
πk ( t - τi )2 - 2πfcτi ] （6），

其中，R为光电探测器的响应度，在数字信号处理中，对

I ( t)作希尔伯特变换可得到复数拍频信号，其表达式为：

I ( t ) = R∑
i = 1

N

r (i)exp ( )-α cτin exp j é
ë

ê
êê
ê ù

û

ú
úú
ú2πf0 ( t - τi ) +

πk ( t - τi )2 - 2πfcτi
rect ( )t - τi

Tp
= ∫0

TF
R r ⋅ exp ( )-α cτn exp j é

ë

ê
êê
ê ù

û

ú
úú
ú2πf0 ( t - τ ) +

πk ( t - τ ) 2 - 2πfcτ
rect ( )t - τ

Tp
dτ = R [ ]h ( t ) ⊗ SCP ( t )

（7），

其中，TF 表示最大往返时间，SCP ( t ) 为探测光信号，公式

（7） 可以表示为探测光信号 SCP 与光纤冲击响应 h ( t)的卷积

形式，即 I ( t ) = R ⋅ [h ( t ) ⊗ SCP ( t ) ]，其中⊗表示卷积。这时

的空间分辨率由脉冲持续时间决定。为了提高空间分辨率，

对拍频信号进行匹配滤波处理：

IMF( )t = R ⋅ [ ]h ( )t ⊗ SCP( )t ⊗ S*CP( )-t =
R ⋅ [ ]h ( )t ⊗ P ( )t

（8），

其中，S*CP (-t ) 为匹配滤波器，P ( t ) 为压缩后的脉冲信号，然

后求解差分相位，可以恢复出外界扰动信号。

2 干涉衰落抑制

干涉衰落作为 Φ-OTDR 的重要研究挑战，已有多种衰

落抑制方案被提出并验证。其中，频率分集 （FD） 方案利

用不同频率脉冲在空间上具有独立衰落特性，已成为主流技

术路线[12]。此外，波长分集 （WD） [13]与相位分集 （PD） [14]

等方案亦被证明能够有效产生相互独立的信号分量。这类分

集方案的共同特征在于产生并合成多个独立的 RBS，以抑制

在特定光纤位置处的信号衰落。然而，由于这些分量均为复

数信号，且相位各不相同，直接叠加可能因相位抵消而无法

增强信号。为此，研究人员提出了旋转矢量和 （RVS） 方

案[15]，通过先对各分路信号进行相位旋转以实现相位对齐，

再进行矢量叠加，从而有效消除信号衰落点，并利用矢量平

均降低噪声，提高信噪比。尽管上述分集技术具有良好的抑

制效果，但其实现往往依赖复杂器件或特殊光纤，导致系统

复杂度和成本显著增加。鉴于此，如何在不增加系统硬件复

杂度的前提下实现高效的干涉衰落抑制，成为前沿研究方

向。其中，基于接收端数字信号处理的干涉衰落抑制方案因

具备灵活性与成本优势而受到广泛关注。

2.1 脉冲内频分法

为将频率分集思想引入基于 LFM 的 Φ-OTDR 系统，文

献[15]提出了脉冲内频分法 （IFD） 以抑制干涉衰落。当LFM

光脉冲在光纤中传播时，其 RBS 因弹性散射特性，能够完整

保留原始调频特征。在调频带宽 F 足够大的条件下，可利用

数字滤波器将每次探测得到的 RBS 划分为多个子带信号。若

将调频范围F划分为M个子带，则每个子带的带宽为：

ΔF = F
M，m = 1，2，…，M （9）。

通过构建匹配滤波器组，其中每个滤波器仅与原始调频

脉冲的特定频谱子带相对应，即可从单次探测的 RBS 中解调

出多个经脉冲压缩的瑞利信号：

sm( z ) = ∫r ( t，z ) h*m( t)dt （10），
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其中，r(t,z)表示在位置 z 处接收到的 RBS，h*m( t)表示与第 m

个子带相匹配的滤波器。脉冲压缩后的瑞利信号在形式上与

单频 Φ-OTDR 获取信号一致，其中心频率由对应的调频范

围决定，因此各子信号的中心频率各不相同，从而具有相互

独立的衰落特性。最终，通过 RVS 算法对这些子信号进行

相位对齐与矢量叠加：

S ( z ) = ∑
m = 1

M

sm( z ) e-jϕm  （11）。

一般而言，子信号数量 M 越多，衰落抑制效果越显著。

但由于边际效应的存在，过度增加 M 并不能无限提升衰落抑

制性能，反而会导致空间分辨率的下降。

2.2 相移变换法

相位分集的核心思想是通过对原始信号施加 π 相移，构

造一个在幅度上与原始信号互补的信号，从而抑制干涉衰

落。具体而言，可以通过选择幅值更高的信号进行相位解调

或将原始信号与互补信号通过 RVS 算法合成实现衰落抑制。

为了在数字域上实现相位分集，文献[16]提出了相移变换法

（PST），首先对采集到的时域背向散射信号 r ( t,z ) 进行快速傅

里叶变换 （FFT），得到频域信号R ( f, z )：
R ( f，z ) = Fr ( t，z ) （12）。

然后，在频域中，将信号乘以特定符号函数H ( f )，
R͂ ( )f，z = R ( )f，z ⋅ H ( )f ，

H ( )f = ì
í
î

ïï
ïï

-1， f ∈  选定子频段

1， 其他频段
 （13）。

该操作相当于对选定频段信号施加 π 相移，从而获得与

原始信号幅度互补的子信号。随后，通过逆傅里叶变换

（IFFT） 将频域信号转换回时域，得到互补信号：

r͂ ( t，z ) = F -1 R͂ ( f，z ) （14）。

单次相移变换可能无法覆盖所有信号衰落情况，因此需

要通过多次调整频域滤波函数，生成多个相移子信号并进行

优化，以实现干涉衰落的完全抑制。在文献[16]的实验中，

通过生成并合成 6 个相移子信号，成功消除了所有信号衰落

点。然而，增加子信号数量会显著提升计算复杂度。

2.3 移动旋转矢量平均法

在使用 RVS 算法来合成独立子带信号时，由于各向同

性噪声的随机分布，旋转后的每个子带信号实际上并不处于

完全相同的方向，导致存在残留衰落。因此，文献[17]提出

了移动旋转矢量平均法 （MRVA） 来抑制随机噪声。MRVA

作为一种空间域 （SSD） 的信号合成方式，通过在一个时间

窗口内，先旋转对齐各个空间点的信号矢量以消除其固有的

随机相位差，然后进行矢量平均，这个过程可以表示为：

vSSD( zm，ti ) = ∑
ξ = 1

S é

ë

ê
êê
ê ù

û

ú
úú
ú( )1

M ∑
k = m

m + M - 1
As，ξ ( )zk，ti e

jθ ( )zm，ti （15），

其中，vSSD 为空间域合成后的信号，S为子信号个数，M 为

窗口宽度，As,ξ为信号振幅，ejθ ( )zm,ti 为旋转因子。利用空间上

相邻点的、幅度更强的信号来补偿衰落点的信号，同时平均

消除不相关噪声，提升了衰落点的信噪比，实现了干涉衰落

的抑制。为了获得更好的衰落抑制效果，需要增加滑动窗口

的长度，然而增加窗口长度会牺牲系统的空间分辨率，因此

在实际应用中需要做出权衡。

2.4 多域集成衰落抑制方案

现有的 IFD、PST 以及 MRVA 均是从单一维度对干涉衰

落进行抑制，各有局限性。为进一步增强信号衰落抑制效

果，本文提出了一种多域集成抑制策略，将相位、频率和空

间维度技术相结合[18]，并将这一思想推广到基于线性调频脉

冲的 DSM-ISAC 系统中，以实现更鲁棒的干涉衰落协同抑

制。需要指出的是，由于匹配滤波和 PST 均依赖完整的信号

频谱，若先行实施 IFD 分解，可能导致频谱截断并破坏 PST

构造的互补关系，因此在所有集成路径中，必须确保 PST 操

作优先于 IFD 分解。基于这一原则，本文设计了 6 种不同的

算法路径，如图 2 所示。方案 （Ⅰ）：仅采用 PST 生成互补

信号对，随后利用 RVS 算法进行信号合成；方案 （Ⅱ）：利

用 3 个中心频率各异的匹配滤波器将原始信号分解为 3 路子

信号，并通过 RVS 算法完成信号合成；方案 （Ⅲ）：首先经

过 PST 生成互补信号对，然后将 IFD 分解为 6 路子信号，最

后利用 RVS 算法进行合成；方案 （Ⅳ）、（Ⅴ） 和 （Ⅵ）：这

3 种方案在分解流程上与方案 （Ⅰ）、（Ⅱ）、（Ⅲ） 相同，但

在信号合成阶段采用 MRVA 算法实现空间域合成。其中，方

案 （Ⅵ） 实现了相位、频率和空间域的级联抑制，在理论上

可达到最佳的衰落抑制效果，但相应的计算复杂度也最高。

在实际应用中，可根据系统需求和应用场景灵活选择不同的

干涉衰落抑制算法，在提高衰落抑制性能的同时兼顾计算效

率。这种多域集成抑制策略为 Φ-OTDR 系统在复杂干涉环

境下的稳定运行提供了新的解决思路。

3 实验装置与结果

为验证多域集成衰落抑制算法在 DSM-ISAC 系统架构中
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的有效性，我们搭建了实验平台，如图 3 所示。

3.1 实验设置

我们采用一台中心波长为 1 550 nm、线宽 100 Hz、输出

功率 16 dBm 的超窄线宽半导体激光器作为光源，并将输出

光均分为两路，分别用于传感与通信信号的产生。在上支路

中，首先利用任意函数发生器 （AFG） 产生线性调制电压信

号，以驱动压控振荡器 （VCO） 输

出线性调频电信号。该电信号进一

步驱动 IQ 调制器 （IQM） 产生调频

光信号，经过放大与滤波后，再经

声光调制器 （AOM） 调制为脉宽

200 ns、带宽 500 MHz 的线性调频

光脉冲，用于传感。在下支路中，

首先离线生成包含 4 个副载波、总

波特率为 36 GBaud 的双偏振 16 阶

正交幅度调制 （DP-16QAM） 数字

副载波复用信号，并采用滚降因子

为 0.01 的根升余弦 （RRC） 滤波以

压缩带宽，并在中间两路副载波之

间预留保护间隔 （PI）。经重采样

后，该信号可以加载到采样率为

120 GSa/s、分辨率为 8 bit 的任意波

形发生器 （AWG），转换为电信号后，再送入相干驱动调制

器 （CDM） 调制生成光通信信号。最终，光通信信号与光

传感信号在光纤耦合器中复用，形成 ISAC 信号。

ISAC 信号经 820 m 标准单模光纤传输后，在光纤末端通

过压电陶瓷换能器 （PZT） 施加外界扰动。PZT 缠绕光纤长

度为 13.17 m，施加的正弦扰动频率为 10 kHz。前向传输光

图 2 多域集成信号衰落抑制实施方案

IFD：脉冲内频分
MRVA：移动旋转矢量平均

PST：相移变换
RBS：瑞利背向散射信号

RVS：旋转矢量和

RBS 信号

图 3 光纤通感融合实验示意图

AFG：任意函数发生器
AOM：声光调制器
AWG：任意波形发生器
CDM：相干驱动调制器

DSM：数字副载波复用光纤
DSO：数字采样示波器
DSP：数字信号处理
EDFA：掺铒光纤放大器

IQM：同相正交调制器
LFM：线性调频脉冲
LO：本振光
OBPF：光带通滤波器

PI：保护间隔
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在进入接收端前经过光放大和光滤波，再与线宽为 100 kHz

的外腔激光器产生的本振光在相干接收机中进行相干检测。

相干接收机输出的电信号由采样率为 80 GSa/s 的数字采样示

波器 （DSO） 采集。通信接收端的数字信号处理 （DSP） 流

程包括色散补偿 （CDC）、粗频偏估计与补偿 （FOC）、副载

波解复用、自适应均衡、载波相位恢复以及平均误码率

（BER） 计算。在副载波解复用过程中，RRC 滤波器不仅用

于副载波提取，还能有效滤除调频脉冲信号。

携带外界扰动信息的 RBS 经环形器进入传感信号接收

端。背向散射光信号首先通过光滤波器去除通信分量和 ASE

噪声，得到与调频脉冲对应的背向散射分量。随后，利用相

干接收机对信号进行相干检测，并由示波器采集以便在数字

域进行信号处理。以 PST-IFD-MRVA 方案为例，数字信号

处理流程包括 PST、IFD、MRVA 合成、相位解调、相位差

分以及扰动波形重构。需要注意的是，PST 仅对信号的相位

谱进行调制，而不改变幅度谱，因此生成的互补信号对需使

用同一匹配滤波器以保持相位对应关系。在 IFD 处理中，两

路信号分别通过同一组子带匹配滤波器。最终，选择 25 μs

窗口长度以兼顾衰落抑制效果以及空间分辨率。

3.2 数字副载波复用光纤通感融合系统性能优化

我们首先研究了不同通信波特率下传感信号对系统传输

性能的影响，实验结果如图 4 （a） 所示。实验中，DP-

16QAM DSM信号中间两副载波之间预留的保护间隔 （PI） 带

宽为 8 GHz。随着通信波特率由 30 GBaud 提升至 42 GBaud，

系统误码率持续上升。更高的波特率信号占用了更宽的 DSM

信号带宽，从而加剧了由于器件带宽受限导致的码间串扰。

当传感信号同时存在时，通信信号的BER进一步恶化，这表

明引入传感功能会对通信应用带来额外损伤。

随后，我们进一步分析了不同 PI 带宽对通信性能的影

响，如图 4 （b） 所示。在无传感信号时，随着 PI 由 2 GHz 增

加至 10 GHz，通信信号带宽逐渐增大，受限于光电器件带

宽，通信信号 Q 因子由 8.32 dB 下降至 7.20 dB。当存在传感

信号时，通信信号 Q 因子由 7.70 dB 下降至 6.88 dB，相应的

Q 因子损伤则由 0.62 dB 减小至 0.32 dB。结果表明，适当增

大 PI 能够有效缓解传感信号对通信信号的串扰。总体而言，

传感信号的引入确实会引起通信性能的恶化。尽管通信与传

感信号在频域上实现了正交复用，但光纤的非线性效应仍会

使传感信号对通信信号产生非线性串扰。此外，通信接收端

的数字示波器需同时采集包含传感信息的复用信号，在量化

比特有限条件下，这会降低通信信号的有效分辨率，从而进

一步削弱通信性能。综合考虑后，本文最终选用 36 GBaud 

DP-16QAM DSM 信号作为通信信号，并将 PI 设置为 8 GHz，

以在通信与传感性能之间实现平衡。

3.3 衰落抑制

我们首先验证了不同方法的应变解调能力，实验结果如

图 5 所示。

图 4 不同波特率的通信信号与保护间隔优化

（a）不同波特率下的误码率性能

DP：双偏振      QAM：正交振幅调制

（b）不同保护间隔带宽的Q因子性能
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图 5 （a） — （f） 左图分别展示了各方案在 820 m 位置

恢复的 10 kHz 正弦扰动的时域波形，右图则给出了对应的

幅度谱密度 （ASD）。可以看出，所有方法均能够准确重构

扰动信号，且重构的时域波形无明显畸变，说明各衰落抑制

方案均具备应变跟踪能力。相应地，在 ASD 中均可观察到

位于 10 kHz 处的显著主瓣峰值，其主瓣带宽与窗函数设定

保持一致，表明各方案对扰动的幅度和频率均能实现精确

定位。

为进一步验证所提方案的衰落噪声抑制性能，我们对比

了 7 种处理方法，包括 6 种衰落抑制方法以及不采用任何衰

落抑制的原始信号处理方法。图 6 展示了 7 种不同的处理方

法所得到强度、差分相位以及相位标准差 （SD） 曲线。

实验结果表明，当未采用任何抑制手段时，存在大量深

度衰落点，差分相位曲线出现密集波动，对应位置的信噪比

极低。这会导致相位解调严重失真，相位标准差显著增大，

振动信号完全淹没于噪声之中。采用单一域方法时，衰落现

象得到部分缓解。其中，PST 算法能够有效减少部分衰落点

和相位波动，但在非振动区域仍出现错误，且在曲线末端难

以区分振动与噪声；IFD 算法则表现更优，强度衰落点和相

位波动均明显减少，相位标准差整体下降，仅在个别位置出

现错误，振动特征已能够被辨识。然而，单一域方法仍难以

完全消除衰落噪声。相比之下，多域集成方法充分结合了相

位域、频域与空间域的互补优势，使强度曲线中的多个衰落

位置得到完全消除，相位标准差曲线平滑连续，非振动区域

未出现错误，差分相位曲线末端的振动特征亦能清晰呈现。

特别是在 PST-IFD-MRVA 级联方案下，衰落抑制效果最为

显著，这进一步证明了多域集成抑制方法在提升 ISAC 系统

鲁棒性的优势。

为了定量评估不同方法的衰落抑制能力，我们计算并比

较 了 4 项 性 能 指 标 ， 包 括 平 均 幅 度 波 动 、 强 度 信 噪 比

（SNR）、应变灵敏度以及振动信噪比。具体而言，平均幅度

波动被定义为在非扰动区域内，单条迹线归一化幅度的最大

值与最小值之比，并对多条迹线的结果进行平均。该指标直

接反映了信号衰落严重程度，其值越小表明衰落抑制效果越

好。强度 SNR 则用于衡量信号的稳定性，其计算公式为：

IntensitySNR = 10 log10 (∑z( )E [ ]A ( )z，t
2

∑z
Var [ ]A ( )z，t ) （16），

其中，A( z,t ) 表示信号幅值，E( )和 var( )分别表示时间平均与

方差，∑z
( ) 表示沿光纤距离的累加。该指标值越高，说明

信号强度越稳定。在评估解调性能方面，应变灵敏度通过计

算无扰动区域内应变信号 ASD 的平均值来确定，用于刻画

系统可探测最小应变能力。振动 SNR 则定义为扰动频谱中

信号峰值功率与噪声基底平均功率的比值，用来衡量系统在

图 5 不同衰落抑制方案解调出的环境扰动以及 ASD

ASD：幅度谱密度
IFD-MRVA：脉冲内频分-移动旋转矢量平均
IFD-RVS：脉冲内频分-旋转矢量和

PST-IFD-MRVA：相移变换-脉冲内频分-移动旋转
矢量平均

PST-IFD-RVS：相移变换-脉冲内频分-旋转矢量和

PST-MRVA：相移变换-移动旋转矢量平均
PST-RVS：相移变换-旋转矢量和
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图 6 不同方案得到的强度、差分相位以及相位标准差曲线

IFD-MRVA：脉冲内频分-移动旋转矢量平均
IFD-RVS：脉冲内频分-旋转矢量和
PST-IFD-MRVA：相移变换-脉冲内频分-移动旋转矢量平均

PST-IFD-RVS：相移变换-脉冲内频分-旋转矢量和
PST-MRVA：相移变换-移动旋转矢量平均
PST-RVS：相移变换-旋转矢量和

SD：标准差
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振动识别上的有效性。图 7 给出了性能指标的对比结果。首

先，在平均幅度波动方面，原始信号高达 81.97 dB，而 PST-

IFD-MRVA 方案显著降低到 27.26 dB，降幅超过 66%，这展

现出最强的衰落抑制能力。在强度 SNR 方面，原始信号仅

22.58 dB，所有衰落抑制方案均实现强度 SNR 提升，其中

PST-IFD-MRVA 增益最为显著，达到 32.41 dB，提升幅度接

近 10 dB。在应变灵敏度方面，原始方案为 445.3 pε/√Hz，而

衰落抑制方案均大幅降低了该值。其中，基于 MRVA 的方案

整体表现最好，尤其是 PST-IFD-MRVA，可将灵敏度进一

步降低至 9.09 pε/√Hz。在振动 SNR 方面，基于 MRVA 的方

案可以将性能提升至 40 dB 左右，其中 PST-IFD-MRVA 方案

相比原始信号提升超过 17 dB，从而显著增强了对微弱振动

的识别能力。

4 结束语

本文针对 DSM-ISAC 中因干涉衰落效应导致传感性能下

降与可靠性不足的研究挑战，提出并实验验证了一种接收端

多域集成数字信号处理衰落抑制方案。通过依次引入 PST、

IFD 和 MRVA，实现干涉衰落的协同抑制。实验结果表明，

受益于 DSM 信号频谱分配的灵活性，通过优化子载波间保

护间隔，在 920 m 标准单模光纤上，实现了 36 GBaud DP-

16QAM 通信信号与线性调频传感脉冲的共波长信道通感融

图 7 不同衰落抑制方案的性能对比

IFD-MRVA：脉冲内频分-移动旋转矢量平均
IFD-RVS：脉冲内频分-旋转矢量和
Ori：原始处理方案

PST-IFD-MRVA：相移变换-脉冲内频分-移动旋转矢量平均
PST-IFD-RVS：相移变换-脉冲内频分-旋转矢量和
PST-MRVA：相移变换-移动旋转矢量平均

PST-RVS：相移变换-旋转矢量和
SNR：信噪比

（a）不同方案的平均幅度波动对比 （b）不同方案的强度SNR对比

（c）不同方案的应变灵敏度对比 （d）不同方案的振动SNR对比
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合。与传统信号的处理方法相比，所提的多域集成衰落抑制

方案使信号强度信噪比提升近 10 dB，应变灵敏度提高至

9.09 pε/√Hz，并成功解调出 10 kHz 振动信号，从而显著改善

了 ISAC 系统性能。
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