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摘要：光纤信道建模对于表征光纤特性、开发先进数字信号处理算法十分重要。基于物理模型的分步傅里叶算法（SSFM）需要大量迭代运算，

复杂度较高，限制了其应用前景。提出了一种基于低复杂度Transformer架构的光纤信道建模方法。该方法对传统Transformer架构做了两处关

键改进——采用相对位置编码替代绝对位置编码，并采用滑动窗口注意力机制替代全局注意力机制，从而提升模型对光纤信道非线性效应的表

征能力。结果表明，所提方法的有效信噪比（ESNR）与 SSFM 相比仅相差 0.15 dB，计算时间较传统 Transformer 减少 69.9%，较 SSFM 降低

96.9%，从而在保持较高精度的同时，显著降低了计算复杂度。
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Abstract: Optical fiber channel modeling is essential for characterizing fiber transmission characteristics and developing advanced digital sig⁃
nal processing algorithms. The split-step Fourier method (SSFM), as a physics-based numerical method, provides high accuracy but suffers 
from high computational complexity due to its iterative nature, which limits its practical deployment. A low-complexity Transformer-based 
architecture for modeling optical fiber channel waveforms is proposed. It incorporates two key modifications to the standard Transformer:  
replacing absolute positional encoding with relative positional encoding and substituting global attention with a sliding-window attention 
mechanism. These changes enhance the model's ability to capture nonlinear transmission effects. Results show that the proposed method 
achieves an Effective Signal-to-Noise Ratio (ESNR) within only 0.15 dB of that obtained by SSFM, while reducing the computation time by 
69.9% compared to the traditional Transformer and by 96.9% compared to SSFM. This verifies that the method maintains high accuracy 
while significantly lowering computational complexity.
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光纤通信系统是现代信息传输基础设施的骨干。快速精

确地建模光纤信道，对于评估光纤特性、优化光网络

配置[1-5]、开发先进的数字信号处理 （DSP） 算法[6-10]以及实

现端到端 （E2E） 优化[11-14]具有关键作用。光信号在光纤中

的传播服从非线性薛定谔方程 （NLSE） [15]，该方程在大多

数情况下缺乏解析解。高斯噪声 （GN） 模型及其变体[16-17]

属于功率级建模方法，将非线性效应等效为高斯噪声，能够

快速、准确地估算广义信噪比。然而，此类 GN 模型无法提

供详细的信号波形信息，因而在 DSP 算法开发中的应用受

限，尤其在对非线性补偿要求较高的场景中。分步傅里叶方

法 （SSFM） [18]是一种传统的波形级建模方法，通过迭代求

解 NLSE。虽然 SSFM 精度较高，但其计算效率低，且复杂

度与信号带宽呈四次方关系[18]，这限制了其在下一代高速光

传输系统中的应用。

近年来，基于神经网络 （NN） 的数据驱动方法被应用

于实现快速、准确的波形级光纤信道建模。这些方法通过利

用带标签的数据与部分先验知识来学习信号与信道特性[19]。

基于 NN 的方法在保持与 SSFM 相近精度的同时，能显著降
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低计算复杂度。生成对抗网络 （GAN） [20]、傅里叶神经算子

（FNO） [21]等架构已在单通道系统中展现出优异的建模效果。

时序神经网络，如双向长短期记忆网络 （BiLSTM） [19] 和

Transformer[22]，凭借其循环结构和自注意力机制，更擅长捕

捉具有符号关联性的光纤非线性特征，表现出更高的建模精

度。通过引入物理先验知识，一种结合分布式特征解耦

（FDD） 与 BiLSTM 的方法已成功应用于多通道波分复用

（WDM） 系统。进一步地，将 Transformer 引入 FDD 架构[23]，

提升了原有 BiLSTM 的非线性建模能力。然而，传统 Trans‐

former 所采用的绝对位置编码[24]难以有效处理符号间非线性

串扰所需的相对位置关系。此外，其自注意力机制的计算复

杂度与输入符号长度呈平方关系，在符号关联性较强的长序

列高速系统中仍面临复杂度较高的挑战。

为解决上述问题，本文提出一种结合旋转位置编码

（RoPE） 和滑动窗口注意力机制[25]的低复杂度 Transformer 架

构 （Slide-Roformer）。该架构将绝对位置编码优化为 RoPE，

从而能更有效地感知符号间的相对位置信息，使其更符合光

纤非线性的物理特征，以提升建模精度。同时，本文将传统

的全局自注意力机制改进为滑动窗口注意力机制，采用局部

感知方式，使每个符号仅需计算在其非线性关联长度范围内

的相关性，从而显著降低了计算复杂度[26]。实验结果表明，

在 5 通道、140 GBaud、发射功率为 8.5 dBm 的传输场景下，

Slide-Roformer 相比传统 Transformer 在波形建模精度上提升

了 75%，计算时间减少了 69.9%。此外，Slide-Roformer 与传

统 SSFM 之间的有效信噪比 （ESNR） 误差仅为 0.15 dB，且

计算时间可降低 96.9%。这些结果表明，本文提出的 Slide-

Roformer 有望成为下一代高速光纤通信系统中信道建模的有

效工具，推动光通信技术的进一步发展。

1 原理

1.1 基于SSFM的光传输系统架构

在本章中，我们主要介绍光传输系统的整体架构。该架

构为 NN 的训练提供了数据来源，同时也作为对比建模精度

与计算复杂度的参考基准。一个典型的基于 SSFM 的光纤传

输仿真系统如图 1 所示，主要包括发射端、光纤信道和接收

端。在发射端，首先通过伪随机数种子生成比特序列，并利

用双偏振 16 阶正交幅度调制将其映射为符号序列。该符号

序列随后以 4 倍过采样率进行上采样，并通过滚降系数为

0.1 的根升余弦滤波器完成脉冲成形。接着，各信道信号被

调制到不同的载波频率上，合成为全场的 WDM 信号，并送

入光纤信道进行传输。该 WDM 信号可表示为：

A ( z，t) = ∑
k = 1

C  Ak( z，t)exp ( jΔωkt) （1），

其中，A表示在两种任意正交偏振模式下的光信号，即AX和

Ay 。Ak表示第 k 个信道的光信号。变量 z表示传输距离，t表

ASE：放大自发辐射
DMUX：解复用

DSP：数字信号处理
EDFA：掺铒光纤放大器

FDD：分布式特征解耦
IQ：同相与正交

MUX：复用
NN：神经网络

SMF：单模光纤
SSFM：分步傅里叶方法

图 1 光传输系统架构及信道建模方法
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示时间坐标，C为 WDM 通道总数，∆ωk = ωk - ω0 为第 k 个

信道中心频率与 WDM 信号中心频率之间的差值。

光信号在单模光纤中的传播由 NLSE 描述，其形式为：

∂A ( )z，t
∂z = ( D̂ + N̂ ) A （2），

其中，D̂为线性算子，用于描述衰减、色散 （CD）；N̂为非

线性算子，用于描述克尔非线性效应，包括自相位调制、交

叉相位调制以及四波混频。在处理双偏振信号时，NLSE[15]

通常采用耦合形式，即耦合 NLSE，或其简化形式——马纳

可夫 （Manakov） [27-28]方程。本文采用 Manakov 方程对光纤

信道建模，其形式为：

i ∂A
∂z - 1

2 β2
∂2A
∂t2 + 8

9 γ | A |2A + α
2 iA = 0 （3），

其中，β2 为群速度色散参数，γ为非线性参数，α为损耗参

数。CD 会引起符号间干扰 （ISI）。在 WDM 系统中，受 ISI

影响的符号个数通过公式 （4） 表示：

NISI = ΔT
Δt = Lβ2Δw

1 S = Lβ2ΔwS （4），

其中，NISI 表示受 ISI 影响的符号数，ΔT 是受 ISI 影响的时间

宽度，Δt是一个符号的持续时间，L是传输距离，Δw是频

谱宽度，S是符号速率。非线性与线性效应在光纤传输过程

中同时存在并相互耦合，这使得非线性也具备一定的符号关

联性。非线性与信号的能量相关，会在光纤的传输过程不断

减弱，导致其符号关联性比 CD 造成的 ISI 要弱。非线性的符

号关联性可以采用有效非线性长度   来近似：

Leff = 1
α， NNL = Leff β2ΔwS （5），

其中，Leff 表示非线性有效长度，通常小于实际传输长度。

NNL 表示非线性符号间相关长度。对于当前时刻符号来说，

与之更加相近的符号对其造成的非线性串扰更强，而更远端

符号造成的影响则较弱。非线性强度与符号之间的相对位置

关系有关，而非绝对位置。

SSFM[29-30]是求解 NLSE 最常用的数值方法。该方法将长

距离光纤传输路径划分为大量微小步长，使得线性与非线性

算子可独立处理。每一步的对称 SSFM 运算可表示为：

A ( z + h,t ) ≈ exp ( )h
2 D̂ exp ìí

î

ü
ý
þ

hN̂ é
ë
êêêê

ù
û
úúúúA ( )z + h

2 , t × exp ( )h
2 D̂ （6），

其中，h 为单步长度。步长配置会影响 SSFM 的精度和计算

效率。在本文中步长采用适用于非线性效应主导系统的变步

长方法—非线性相位旋转法[31]。采样率设置为单通道符号率

的 4 倍。为便于计算，线性算子在频域中计算，而非线性算

子则在时域中计算。在每段光纤末端使用掺铒光纤放大器

（EDFA） 补偿信号衰减，其引入的放大自发辐射 （ASE） 噪

声可建模为高斯噪声。本文采用的光纤信道参数如表 1

所示。

在光纤信道传输后，首先对目标信道信号进行解复用。

接收端数字信号处理 （Rx DSP） 流程如下：先使用匹配的

根升余弦 （RRC） 滤波器进行滤波，随后执行降采样。接着

进行色散补偿 （CDC） 以校正线性损伤，继而完成载波相位

恢复 （CPR） 与解调。最终，通过计算 Q 因子或有效信噪比

（ESNR） 等指标对传输性能进行定量评估。

基于 SSFM 的仿真系统所产生的 WDM 信号波形，为 NN

模型提供了充足的训练数据。在性能测试阶段，发送端与接

收端采用完全一致的处理流程与参数设置，以便公平比较基

于 SSFM 与基于 NN 的两类光纤信道模型之间的性能差异。

1.2 基于分布式特征解耦的光纤信道建模

基于 SSFM 的光纤信道建模方法虽然精度较高，但其计

算复杂度高，尤其在高波特率场景下，限制了在下一代高速

光传输系统中的应用。为缓解此问题，研究人员引入 NN 进

行光纤信道建模，并结合部分物理先验信息，构建数据-物

理混合驱动的建模架构，以进一步提升建模精度。FDD[32]是

一种数据-物理混合驱动方案，它通过物理模型建模线性效

应、NN 建模非线性效应，充分发挥二者优势，从而提高整

体建模精度。此外，FDD 每次仅建模一个光纤跨段，通过多

模块级联实现长距离传输。该方案在多通道 WDM 系统中展

现出较好的建模效果，因此本文选取该方案作为基础架构，

并对其中的 NN 结构进行优化。

为使 NN 有效学习具备符号关联性的非线性特征，需通

过滑动窗口方法构建包含过去与未来时刻填充符号的输入窗

口。但在高速系统中，由于符号关联性较长，每次推理过程

中需反复计算填充符号信息，这导致复杂度较高。为此，我

们在 NN 的训练与推理过程中引入了序列到序列 （Seq2Seq）

架构[30]。该架构采用多符号输入、多符号输出的模式，能够

表 1 光纤信道参数

参数

载波波长

通道数

符号速率

发射功率

衰减

数值

1 550 nm

5

140 GBaud

8.5 dBm

0.2 dB/km

参数

色散系数

非线性系数

跨段长度

EDFA的噪声系数

SSFM的最大非线性相位旋转

数值

17 ps/nm⋅km

1.3 /（W⋅km）

80 km

5 dB

0.005

EDFA：掺铒光纤放大器     SSFM：分步傅里叶方法
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单次同时预测多个符号，从而减少 NN 在重复循环预测过程

中对填充符号的重复计算次数，降低推理时间。

此外，在训练过程中，参考“近端符号对当前时刻符号

非线性串扰更强，远端符号更弱”的物理机制，我们采用迁

移学习构建了两阶段训练模式。第一阶段训练中，先以较少

的填充符号构建输入-输出数据对，以较低复杂度有效学习

近端影响较大的非线性串扰；第二阶段训练中，进一步构建

更长的输入-输出数据对，补充学习远端符号的非线性串

扰。该两阶段训练模式有效降低了训练资源开销，并提升了

模型的最终训练精度。

2 基于Slide-Roformer的光纤信道建模技术

BiLSTM 凭借其序列建模能力，已成为光纤信道非线性

建模的有效架构之一。Transformer 基于其自注意力机制，相

比 BiLSTM 具有更强的非线性拟合能力，在非线性更强的多

通道、高功率 WDM 系统中表现出更优的建模性能。然而，

传统 Transformer 所采用的绝对位置编码难以有效处理符号间

非线性串扰所依赖的相对位置关系。此外，其自注意力机制

的计算复杂度与输入符号长度呈平方关系，导致在符号关联

性较长的高速系统中面临较高的复杂度挑战。在本文中，我

们通过优化 Transformer 的位置编码与注意力机制，提出了

Slide-Roformer 架构，如图 2 所示，从而增强了 Transformer

在高速光通信系统中的信道建模能力。下文将分别介绍传统

Transformer 架构，以及优化后的旋转位置编码 （RoPE） 和

滑动窗口注意力机制。

2.1 Transformer架构

光纤信道建模通常仅采用 Transformer 的编码器架构，而

不使用解码器。这是因为仅凭编码器中的自注意力机制，就

能实现对时序非线性特征的有效建模。Transformer 编码器由

多个堆叠的相同层组成，每层主要包括多头自注意力机制、

前馈神经网络与残差连接 3 个核心模块。首先，多头自注意

力机制通过并行使用多个不同的自注意力函数，从多个子空

间中捕获不同类型的关系。随后，自注意力机制对输入信号

进行 3 次不同的线性变换，分别生成查询 （QQ）、键 （KK） 和

值 （VV） 向量，并通过公式 （7） 计算不同输入元素之间的

关联程度。接着，多头注意力机制的输出经过前馈网络处

理，以增强模型的表达能力。此外，每个子层之间均包含残

差连接，这有助于缓解深层网络中的梯度消失问题，并提升

信息流动效率。通过多层编码器的堆叠，模型能够逐步建立

从局部到全局的多层次特征表示，从而实现有效的时序特征

建模。

Attention (Q，K，V ) = Softmax (QKT

d )V （7）。

此外，Transformer 不具备类似 BiLSTM 的循环结构，无

法有效获取不同元素间的位置关系。为了解决这一问题，

Transformer 通常引入绝对位置编码，通过一组确定性的正弦

和余弦函数生成，其不同频率对应不同的时间尺度，从而在

连续空间中为每个位置的元素分配唯一的位置表示形式。对

于输入序列中第 pos 个位置和隐藏维度中的第 i 个维度，位

KK：关键向量     QQ：查询向量     RoPE：旋转位置编码     VV：数值向量

图 2 Slide-Roformer 结构

×N

残差连接与
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前馈网络层

残差连接与
层归一化

多头注意力机制

旋转位置编码
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滑动窗
口注意
力机制

……

……

……

全局注意力机制 滑动窗口注意力机制

相乘 拼接

Softmax

……
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…
…

…
…

…
…

…
…

…
…
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置编码的计算公式为：

PE ( )pos，2i = sin ( )pos

θ
2i
d

，PE ( )pos，2i + 1 = cos ( )pos

θ
2i
d

（8），

其中，d 表示模型隐藏层的维度, θ代表旋转角度。通过将位

置编码与输入嵌入相加，模型在保持输入维度不变的情况下

能够显式获得序列的顺序信息，从而在注意力计算中兼顾内

容与位置信息。

2.2 旋转位置编码

绝对位置编码可以有效为输入元素添加绝对位置信息，

但光纤信道的非线性效应主要取决于各符号之间的相对位

置，而非绝对位置，这导致绝对位置编码方式效率低下，影

响建模精度。为此，我们引入了一种相对位置编码方式—

RoPE。该方法将位置信息以旋转变换的方式编码进各个位

置的符号所对应的 QQ 和 KK 矩阵中，并通过 QQ 和 KK 矩阵相乘，

以差分的形式表征各符号之间的相对位置关系，而不再直接

将绝对位置信息添加到各符号中。RoPE 的编码过程如图 2

金色部分所示，在位置 m 和 n 时，QQ 和 KK 分别经过公式 （9）

和公式 （10） 表示的旋转变换。其中，Wq 代表向量经过 QQ

矩阵映射，Wk代表经过 KK 矩阵映射，并对 KK 进行转置，再

与 QQ 相乘取实部，得到公式 （11）。在相乘的结果中，通过

m-n 差分地表示两个不同位置之间的相对位置关系。通过引

入 RoPE，模型可以更加高效地捕捉不同符号之间的相对非

线性串扰强度，更加适配非线性串扰的物理特征，提高非线

性建模精度。除此之外，引入 RoPE 的模型还具备较好的外

推性，适配前文所提到的 Seq2Seq 方案。外推性是指模型在

训练时和预测时输入长度不一致。这使得我们在模型的训练

中采用输入长度相对较短序列，提高训练效率；在推理过程

中，直接外推到更长的输入和输出序列，从而提高模型在预

测长序列信号时的计算效率。

fQ(xm，m) = (Wqxm ) eimθ （9），

fK(xn，n) = (Wkxn ) einθ （10），

g (xm，xn，m - n) = Re éë(Wqxm ) (Wkxn ) *ei ( )m - n θù
û （11）。

2.3 滑动窗口注意力机制

在光纤信道建模中，传统 Transformer 不仅存在位置编码

上的不足，还受限于较高的计算复杂度。这一限制主要源于

自注意力机制需计算当前符号与序列中所有符号之间的相对

关联，导致其复杂度与输入符号长度呈平方关系。此外，光

纤的非线性符号关联性可由公式 （5） 表示，其关联长度被

限制在一定范围内，超出此范围的信息对于当前符号而言是

冗余的。上述问题使得模型在处理较长符号序列时产生大量

冗余计算，增加了计算复杂度，尤其对符号关联性更长的下

一代高速光传输系统影响显著。

为克服这一限制的约束，构建更加符合光纤信道非线

性特征的注意力标准机制，我们引入了滑动窗口注意力机

制，如图 2 黄色部分所示。在滑动窗口注意力中，对于每个

位置 i 处的符号，仅计算其与当前位置前后 w 个符号的注

意力，从而使得整个注意力窗口的大小 2w + 1，这显著降

低了每个符号的计算复杂度。滑动窗口注意力机制首先使

用一个滑动窗口操作在 KK、QQ、VV 矩阵上提取局部窗口得到

KKwindowed、 QQwindowed、VVwindowed。我们以 KK 的操作为例，滑动窗口过

程可以表示为：

Kwindowed ∈ Rn × ( )2w + 1 × d （12）。

每个Kwindowed[ i]对应K i - w,…, K i + w，超出边界的可补零或

掩码。随后使用张量广播方式，将每个Qi - w:i + w与Ki - w:i + w进

行了点积，最后得到使用滑动窗口注意力机制计算出的分

数，如公式 （13） 所示：

score i = Softmax ( 1
d
Qi - w：i + w ⋅ K T

i - w：i + w )V i - w：i + w ∈ R2w + 1

（13）。

滑动窗口注意力机制相比全局注意力更高效，能在保持

模型性能的同时，极大降低计算资源消耗，并支持长序列的

高效建模。

3 结果分析

3.1 训练数据集和超参数配置

为 验 证 Slide-Roformer 相 比 传 统 Transformer （Vanilla-

Transformer） 在光纤信道建模中精度与复杂度的优势，我们

构建了一套高速 WDM 相干光传输仿真系统。系统设置通道

数为 5，符号速率为 140 GBaud，每通道发射功率为 8.5 dBm，

工作于高非线性区域，以考察两模型在强非线性条件下的建

模能力差异。

训练过程中，为避免过拟合，我们采用 10 组不同随机

种子生成长度为 10 000 符号的发送信号，并收集其经信道传

输后各跨段的输入与输出波形作为训练数据集。Slide-

Roformer 与传统 Transformer 的参数配置如表 2 所示，二者主

干网络参数基本一致。此外，为保证神经网络准确学习非线
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性效应，根据公式 （5） 计算非线性效应影响长度，将

Slide-Roformer 中滑动窗口注意力机制的长度 w 设为 300。旋

转角度 θ 为工程默认值通常设置为 10 000，并使得最大的波

长远大于常见序列长度，从而覆盖需要的频谱[22，25]。训练使

用 Smooth L1 损失函数，优化器选用 Adam，初始学习率为

5×10⁻⁴，并采用余弦退火策略逐步降低学习率。在 Seq2Seq

架构的两阶段训练中，第一阶段训练轮数设为 500，输入窗

口包含 60 个符号 （中心 20 个为有效符号，前后各填充 20

个）；第二阶段训练轮数为 200，输入窗口包含 580 个符号

（中心 300 个为有效符号，前后各填充 140 个）。

在测试阶段，我们采用与训练集不同的随机种子，生成

长度为 1×10⁶符号的发送序列，分别通过不同模型进行传

输，以比较其建模效果与计算时间。

3.2 性能标准

基于 NN 的光纤信道波形建模性能评估包含精度评估与

复杂度评估两方面。精度评估基于波形建模精度和传输性能

预测精度，并以 SSFM 的计算结果作为参考值。波形建模精

度采用 （NMSE） 进行量化，其定义为：

NMSE = ∑
i = 1

Ndata

|| yi - yi 2

∑
i = 1

Ndata
|| yi
2

（14），

yi 表示 SSFM 的输出样本，yi 表示 NN

的输出样本。传输性能的评估需要先

对建模信号进行 Rx DSP 处理并进行解

调，计算传输的误码率 （BER） 和 Q

因子，它们之间的关系为：

Q = 20 log10 ( 2 erfc-1(2BER) )
（15）。

我们采用 SSFM 与 NN 所得的 Q 因

子之间的误差，作为传输性能预测精

度的度量指标。

复杂度评估则通过比较 SSFM 与 NN 在传输相同信号时

所需的计算时间来完成。NN 对于 SSFM 的加速比可表示为：

Ratio = TimeSSFM - TimeNNTimeSSFM
（16）。

3.3 Slide-Roformer的精度增益

为验证 Slide-Roformer 在建模精度上的提升，我们将其

与 Vanilla-Transformer 进行对比。为进一步评估两阶段训练

带来的性能增益，Slide-Roformer 分别采用单阶段与两阶段

训练进行实验。3 个模型在训练过程中的损失函数变化如图

3 所示。

结果显示，采用两阶段训练的 Slide-Roformer 最终损失

为 3.2×10⁻⁵，较单阶段训练的 5.9×10⁻⁵明显降低，这证明

了两阶段训练对提升模型精度的有效性。进一步观察发现，

在 第 一 阶 段 训 练 结 束 时 （第 500 轮）， Slide-Roformer 与

Vanilla-Transformer 的损失均约为 7.0×10⁻⁵。进入第二阶段

后，Slide-Roformer 的损失迅速收敛至 4.0×10⁻⁵，而 Vanilla-

Transformer 的损失不仅未下降，反而上升至 2.5×10⁻²，凸显

了 Slide-Roformer 在两阶段训练中的优势。

这 一 差 异 主 要 源 于 位 置 编 码 机 制 的 不 同 ： Slide-

Roformer 采用相对位置编码，即使两个阶段的输入符号长度

不同，仍能通过相对位置关系有效提取相同的非线性特征；

而 Vanilla-Transformer 采用绝对位置编码，当输入序列长度

增加时，会引入第一阶段未见过的新位置信息，导致模型初

始阶段无法适应此类信息，需重新训练收敛，从而影响了最

终精度。

为进一步评估 Slide-Roformer 相对于传统方法的精度优

表 2 Slide-Roformer 和 Vanilla-Transformer 的参数配置

参数

输入尺寸

隐藏尺寸

注意力头数

前馈网络尺寸

层数

数值

80

240

6

960

3

图 3 Slide-Roformer 与 Transformer 训练损失

Vanilla-Transformer 两阶段训练
Slide-Roformer两阶段训练
Slide-Roformer单阶段训练

Epoch

0   100 200 300 400 500 600 700

损
失

100

10-1

10-2

10-3

10-4

10-5
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势 ， 我 们 将 其 与 包 括 Vanilla-

Transformer、 Seq2Seq-BiLSTM[30] 和

FNO[21]在内的其他神经网络模型进行

了 对 比 。 在 Seq2Seq-BiLSTM 中 ，

BiLSTM 的隐藏层维度设为 240，层数

为 3。该模型同样采用 Seq2Seq 架构，

其两阶段训练的参数配置与 Slide-

Roformer 保持一致：第 1 阶段输入窗

口包含 60 个符号 （20+20+20），第 2

阶段输入窗口包含 580 个符号 （140+

300+140）。FNO 模型的傅里叶模态数

设为 24，宽度为 16，层数为 4，采用

单阶段训练，输入窗口包含 300 个符

号 （140+20+140）。我们比较了各模

型在 800 km 传输后的 NMSE，以评估

其在长距离传输下的建模性能。如图

4 所 示 ， Slide-Roformer 在 800 km 后

的 NMSE 最 低 ， 仅 为 2.0×10 ⁻ ³； 而

Vanilla-Transformer、Seq2Seq-BiLSTM

和FNO的NMSE分别上升至9.2×10⁻³、
4.2×10⁻³和 7.8×10⁻³。Slide-Roformer

相对于其他神经网络模型实现了约

50%∽74% 的 NMSE 降低，这表明其

具有更优的非线性效应建模能力。

其次，我们比较了深度学习模型

与基准 SSFM 在传输性能预测上的差

异，以评估它们在传输性能预测及

DSP 算法设计中的应用潜力。图 5 展

示 了 基 于 SSFM、 Slide-Roformer 和

Vanilla-Transformer 建模的信号，在

800 km 传输并经过线性 DSP 处理后的星座图。可以看出，

Slide-Roformer 与 SSFM 的 星 座 图 噪 声 分 布 高 度 吻 合 ， 而

Vanilla-Transformer 未能准确建模光纤信道的非线性噪声。

从量化结果看，SSFM 的 ESNR 为 8.0 dB，Slide-Roformer 为

7.85 dB，误差仅为 0.15 dB；Vanilla-Transformer 的 ESNR 为

12.69 dB，与 SSFM 的误差达 4.69 dB。这些结果表明，Slide-

Roformer 相比其他模型能更准确地反映光纤信道的特征。这

些优势得益于 Slide-Roformer 采用的相对位置编码更符合光

纤信道的非线性特性，且符号间的相对位置关系也使其能够

适配更高效的两阶段训练模式，从而实现了更高的建模

精度。

3.4 Slide-Roformer复杂度优化

在模型推理过程中，采用多符号输出方式可有效减少两

端填充符号的重复计算次数，从而缩短推理时间。为验证多

符号输出机制的有效性，我们在建模相同总长度的符号序列

时，分别设定模型单次推理预测 50 至 5 000 个符号，并记录

完整信号建模所需时间。所有神经网络模型均部署于同一台

配备 NVIDIA GeForce RTX 4090 24 GB GPU 的服务器上。

具体结果如图 6 所示，随着单次输出符号数量的增加，

总计算时间逐渐减少，从输出 50 个符号时的 65 s 优化至输

出 5 000 个符号时的 4.6 s，证明了该方法在降低计算时间方

面的有效性。进一步地，为确保多符号输出模式下模型精度

不 发 生 劣 化 ， 我 们 测 试 了 Slide-Roformer 与 Vanilla-

FNO：傅里叶神经算子      NMSE：归一化均方误差

图 4 Slide-Roformer 与 Vanilla-Transformer 在 800 km 传输范围内 NMSE 的对比

图 5 SSFM、Slide-Roformer、Vanilla-Transformer 在 800 km 处的星座图和对应的 ESNR

ESNR：有效信噪比      SSFM：分步傅里叶算法

距离/km

N
M

SE

9

8

7

6

5

4

3

2

1

0
80 160 240 320 400 480 560 640 720 800

×10-3

Slide-Roformer

Vanilla-Transformer

Seq2Seq-BiLSTM

FNO

SSFM Slide-Roformer Vanilla-Transformer

ESNR：14.75 dB ESNR：14.46 dB ESNR：20.36 dB
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Transformer 在单次输出 300～5 000 个

符号时的 NMSE，如图 7 所示。

在 800 km 传 输 距 离 下 ， Slide-

Roformer 在 不 同 输 出 符 号 长 度 下 的

NMSE 整 体 稳 定 在 约 2.8×10 ⁻ ³ 的 水

平 ， 而 Vanilla-Transformer 的 NMSE

随输出符号长度的增加持续恶化，在

单次输出 5 000 个符号时达到 1.9，比

Slide-Roformer 高出 3 个数量级。这表

明 Slide-Roformer 能够有效适用于多

符 号 预 测 模 式 ， 而 Vanilla-

Transformer 在多符号预测中出现了显

著的波形失真，无法保持建模精度。

这一优势得益于 Slide-Roformer

在位置编码与注意力机制上的有效设

计：首先，RoPE 采用的相对位置编

码保证了模型在不同输入长度下仍能

有效感知符号间的相对位置信息；其

次，滑动窗口注意力机制将符号的关

联范围限制在特定长度内，使得无论

输入序列多长，每个时刻的符号均可

在固定范围内以相同模式学习非线性

相关性，从而实现稳定有效的非线性

建模。

为进一步评估计算效率，我们将

Slide-Roformer 与数值方法 SSFM 以及

神 经 网 络 模 型 Vanilla-Transformer、

Seq2Seq-BiLSTM 和 FNO 进行了计算

时 间 对 比 。 Slide-Roformer 与 Seq2

Seq-BiLSTM 均 单 次 预 测 5 000 个 符

号；而 Vanilla-Transformer 为了保持

较 高 精 度 ， 单 次 预 测 300 个 符 号 ；

FNO 则与训练配置一致，单次预测 20

个符号。表 3 统计了上述方法在传输

80 km （单个跨段） 时的计算时间。

结果表明，Slide-Roformer 的计算时

间 仅 为 4.6 s， 较 Vanilla-Transformer

（15.3 s）、 Seq2Seq-BiLSTM （10.9 s）

和 FNO （91.2 s） 具 有 明 显 优 势 。

FNO 因采用少符号预测模式，需多次

循环并重复计算填充符号，导致复杂

度较高。相比之下，Slide-Roformer

单
跨

预
测

时
间

/s

图 6 不同输出中心符号长度下神经网络的单跨预测时间

中心符号数目

图 7 Slide-Roformer 和 Transformer 输出不同符号的 NMSE 对比

NMSE：归一化均方误差

表 3 不同模型的计算时间（传输距离 80 km）

模型

时间/s

Slide-Roformer

4.6

Vanilla-
Transformer

15.3

Seq2Seq-
BiLSTM

10.9

FNO

91.2

SSFM

151

FNO：傅里叶神经算子      SSFM：分步傅里叶算法

50                 100                300                500               1 000            3 000             5 000

65

60

50

40

30

20

10

0

35

15

7.5 6.1 5.3 4.6

距离/km

Slide-Roformer

80  160 240 320 400 480 560 640 720 800

N
M

SE

3.0

2.5

2.0

1.5

1.0

0.5

0.0

×10-3

k =300
k =600
k =3 000
k =5 000

Vanilla-Transformer

N
M

SE

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

k =300
k =600
k =3 000
k =5 000

距离/km

80  160 240 320 400 480 560 640 720 800

10



基于低复杂度 Transformer 的光纤信道快速精确建模技术 史明辉 等热点专题

中兴通讯技术
2025 年 12 月    第 31 卷第 6 期   Dec. 2025   Vol. 31  No. 6

通过将全局注意力优化为滑动窗口注意力，在多符号预测模

式下降低了注意力模块的计算复杂度，从而较传统 Trans‐

former 更为高效。与传统数值方法 SSFM （仿真时间 151 s）

相比，Slide-Roformer 实现了 96.9% 的加速。以上结果充分

表明，Slide-Roformer 能够有效克服传统算法复杂度高的难

题，有望成为下一代高速光传输系统中信道建模的高效

工具。

4 结束语

本文针对传统分步傅里叶方法计算复杂度高的问题，提

出了一种用于光纤信道建模的低复杂度 Slide-Roformer 架构。

通过引入 RoPE 与滑动窗口注意力机制，该模型能够更有效

地学习符号间的相对非线性串扰关系，并显著减少计算时

间 。 实 验 结 果 表 明 ， 与 传 统 Transformer 相 比 ， Slide-

Roformer 的波形误差 NMSE 改善了 74%，计算时间降低了

69.9%。与 SSFM 方法相比，ESNR 仅为 0.15 dB，计算时间可

降低 96.9%。这些结果验证了 Slide-Roformer 在光纤信道建

模中兼具高精度与低复杂度的优势，为相关研究提供了一种

高效的新方法，有望推动下一代高速光通信系统的进一步

发展。
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