ZTE TECHNOLOGY JOURNAL

专题

多维复用硅基集成光子器件

DOI:10.3969/j.issn.1009-6868.2017.05.006 网络出版地址: http://kns.cnki.net/kcms/detail/34.1228.TN.20170912.1607.002.html

储涛 等

多维复用硅基集成光子器件 Silicon Photonic Devices for Wavelength/Mode/Polarization Multiplexing

储涛/CHU Tao¹ 郭德汾/GUO Defen² 吴维轲/WU Weike¹ (1. 浙江大学,浙江 杭州 310027; 2. 中国科学院半导体研究所,北京 100083) (1. Zhejiang University, Hangzhou 310027,

China; 2. Institute of Semiconductors, Chinese

Academy of Sciences, Beijing 100083, China)

防着信息社会的高速发展,海量 数据信息的传输和处理面临着 越来越高的要求。为了更有效地利 用已经架设完成的通信和传输网络, 同时降低未建硬件网络的建设成本, 减少硬件所占用的空间要求,复用和 解复用技术一直是通信和传输领域 技术发展的持续追求。在光通信系 统中,由于光波在波长、偏振和模式 等多个维度上具备携载不同信息的 能力,因此光波的复用技术从波分复 用(WDM)技术被提出以来得到了长 足的发展和进步,特别是WDM已经 被广泛应用,成为光通信的基本形式 之一。随着数据传输对于容量的进 一步需求,利用光波的偏振和模式完 成复用也已经成为新的研究热点,并 在相干通信和模式复用通信领域得 到了关注,有望成为未来光通信的主 要形式之一。随着技术的发展,光通 信和数据传输即将进入一个技术手

收稿日期:2017-08-05 网络出版日期:2017-09-12 基金项目:国家自然科学基金 (61575189、61635011);国家重点研发计 划(2016YFB0402505)

中图分类号:TN929.5 文献标志码:A 文章编号:1009-6868 (2017) 05-0030-004

摘要: 从波长、模式、偏振几个维度的复用/解复用和路由出发,分别提出了新颖的 器件设计方法并制作了相应的硅基光子器件,包括:阵列波导光栅器件(AWG)/刻 蚀衍射光栅器件(EDG)、模式分离合束器件、偏振分离耦合光栅、偏振分离/分离旋 转器件。AWG可以采用一步刻蚀简单工艺制作形成,EDG 插损得到大幅降低,模式 分离器件带宽增大,插损也得到降低,偏振分离耦合光栅的耦合效率得到有效提 升,偏振分离/旋转器件的插损和带宽也被显著改进。以上器件全部符合互补金属 氧化物半导体(CMOS)-180 nm 工艺标准,这些器件的研制工作为多维度光波复 用/解复用处理及传输提供了先进的器件技术保障。

关键词: 波长复用/解复用;模式复用/解复用;偏振控制;硅光器件

Abstract: In this paper, various silicon photonic devices designed for wavelength/ mode/polarization multiplexing/demultiplexing are proposed, including arrayed waveguide grating (AWG) and etched diffraction grating (EDG), mode Mux/DeMux devices, polarization splitting grating coupler, and polarization splitting rotating device. With these novel devices, the following results can be achieved: (1) AWG could be formed by single step etching process; (2) EDG insertion loss is greatly reduced; (3) mode splitting device bandwidth increases, while the insertion loss is reduced; (4) the coupling efficiency of the polarization splitting grating coupler is effectively improved; (5) the insertion loss and bandwidth of the polarization splitting rotating device are also significantly improved. It is believed that the Mux/DeMux technologies on dimensions of wavelength/mode/polarization will be strongly supported by these silicon photonic devices, which are compatible with complementary metal oxide semiconductory (CMOS)–180 nm processing technologies.

Keywords: wavelength Mux/DeMux; mode Mux/DeMux; polarization controlling; silicon photonic devices

段与方法更丰富多彩的多维度复用 时代。

另一方面,各种复用技术的实现 离不开相对应的复用与解复用器 件。现在广泛商用的光电子器件基 于传统的可编程逻辑控制器(PLC) 以及化合物半导体材料平台,在大部 分各自维度对应的复用/解复用器件 上有了较为成熟的解决方案。然而, 随着对光电子器件低成本、低能耗、 高集成度要求的提高和相干通信等 新型通信方式的发展, 硅基光电子集 成器件由于其波导拐弯半径小, 利于 高密度集成以及可利用成熟的互补 金属氧化物半导体(CMOS)产线技术 超低成本批量生产, 被普遍寄予厚 望, 成为构建下一代光子通信网络和 数据互连网络乃至量子通信网络的 理想器件。因此, 在调制器等各种基 础通信器件已成功利用硅基光电子 集成技术研制开发的基础上, 各种维 度对应的复用/解复用器件也被希望

中兴通讯技术 30 2017年10月 第23卷第5期 Oct. 2017 Vol.23 No.5

专题

多维复用硅基集成光子器件

储涛 等

基于硅基光子学技术平台来开发,以 实现光电子通信器件单片集成。

基于以上光复用技术的发展以 及新型复用器件的研发要求,我们开 展了多种对应各种维度的硅光复用 解复用器件的开发。

1 波长复用解复用器件

波长复用是光通信和数据传输 中最常用的复用技术,该技术的应用 极大地提升了复用效率,为大容量通 信的实现奠定了先进的技术基础。 在系统中为了实现波长的复用和解 复用,通常使用阵列波导光栅器件 (AWG)、刻蚀衍射光栅器件(EDG) 等波分复用器件。

1.1 AWG

AWG 是最常用的波分复用器件 之一,由于其可实现 64 路甚至更多 的波长信道的分/合束,常被用于实 现密集波分复用功能。传统的 AWG 多基于 PLC 石英波导器件,已经十分 成熟并得到了广泛应用。然而,PLC 器件的尺寸一般在几厘米以上,不利 于系统集成,因此,基于绝缘衬底上 的硅(SOI)基板的 AWG 研究也颇受 重视。

AWG由输入输出波导、自由传输 区域和阵列波导构成, 硅基 AWG 器 件的尺寸可以降低至几百微米。然 而,高密度集成在另一方面也带来了 串扰控制和波导间模式匹配等问 题。在传统的设计中,对于和自由传 输区域结合的波导,通常采用双层刻 蚀的楔形波导结构,即利用楔形波导 在平面方向增大阵列波导和自由传 输区域的光场匹配的同时,采取套刻 双层刻蚀形成垂直方向上的收束/扩 散结构,增进光场匹配。然而,由于 套刻存在对准误差,刻蚀存在深度误 差,不可避免将带来器件结构的不确 定性和成品率降低,也增加了制造成 本。因此,我们从AWG自由传输区 域和阵列波导的耦合特性和需要出 发,通过利用抛物线型楔形波导以最 短的长度完成光场的收束/扩散,使 阵列波导以更小的间距在自由传输 区域边缘排列,在更大效率地接收衍 射光的同时能有效控制波导间耦合 串扰不至增大^[1-2]。采用以上的设计, 通过一次性曝光刻蚀工艺制作的 8×8 硅基 AWG 与采用线性和指数型楔形 波导 AWG 相比,串扰最大降低超过 7 dB。信道间隔 200 GHz 和 400 GHz 的 8 × 8 硅基 AWG 插损分别最低达 2.3 dB、2.4 dB,最小串扰达 - 20 dB、 - 25 dB,信道的 3 dB 带宽为 0.9 nm、 2.2 nm,性能指标和当时国际上采用 套刻双层刻蚀的 AWG 的指标不相上 下^[3],但是制作工艺却大为简化。

1.2 EDG

在数据中心的数据互连中,由于 网络简单,信道数要求较少,EDG 通 常被认为是比较易于使用的波分复 用/解复用器件。然而,基于 SOI 的 EDG 器件插入损耗通常达到 3 dB 以 上。而复用和解复用器件在传输链 路中配对使用,EDG 的插损对于硅基 光子传输链路的建立形成了障碍。

基于 EDG 的研究现状和应用上 对于降低插损的急迫需求,我们从设 计方法入手对 EDG 展开了研究。传 统的 EDG 设计方法里, 光栅参数的近 似模拟计算使得分布在罗兰圆上的 不同输出通道产生像差,对器件的性 能产生影响。过往的研究虽然对光 栅周期和朝向都做了优化,但是输出 波导采用均匀分布方式,也没有考虑 到多个波长输出可能需要的优化。 我们创新性地提出了多点优化像差 的方法,对多个波长、多个输出波导 的位置分别进行计算,从根本上改变 了 EDG 的设计手法^[4]。按此方法我们 设计制作了1 550 nm 波段的 1×4 的 EDG器件,其插入损耗1~1.5 dB,串 扰-30.4~-34.0 dB。插入损耗比以 往的 EDG 器件降低了一半以上¹⁵,为 EDG 在硅光链路中的使用奠定了关 键的技术基础。利用新加坡IME的 CMOS-180 nm 工艺, 在直径 20.32 cm

晶圆上的不同位置上制作的 EDG 也 表现出很好的性能一致性。在晶圆 中部和边缘的不同位置随机抽取的 6 个同样设计的 EDG 测试结果表明:所 有器件各信道的插损都低于 1.9 dB, 器件串扰小于 - 26 dB,表明该器件 具有非常好的设计冗余度和工艺适 应性。

2 模式复用/解复用器件

模式复用技术作为新兴复用技术可以进一步提高光通信容量,低插损、低串扰、大带宽、大制作容差和小尺寸的模式复用/解复用器件是实现模式复用的关键。在保持绝热耦合器的大带宽、低插损和大容差的前提下,解决其器件长度过长的问题,我们采用了捷径绝热的方法来优化器件的绝热性,设计验证了一系列性能优良的模式复用/解复用器件^[6]。

图 1 是横电波模式(TE0)-TE1-TE2-TE3(TE0、TE1、TE2、TE3分别代 表电场平行于芯片方向的光波的0、 1、2、3 阶模式分量)共4个模式的复 用/解复用器件的显微镜图片和部分 扫描电镜图片。器件的测量结果如 图 2 所示, a)一d)分别显示了TE0、 TE1、TE2和TE3信道的传输频谱曲 线。在1500~1600 nm的测量波长 范围内,器件的最大传输损耗小于 1.3 dB,并且不同信道间的串扰小 于-23 dB。

3 偏振控制器件

随着相干调制等高级格式调制 传输方式以及量子通信的出现,光的 偏振态作为光的基本形态之一成为 增加复用形式的一种新维度,而各种 偏振控制器件作为光通信中实现光 的偏振态的分离、合束、旋转的关键 器件,也越来越多的在 SOI 平台上被 研究实现。

3.1 偏振分离光栅

通常硅波导与标准单模光纤的 光场相差数百倍,平面耦合(通常使 **ZTE TECHNOLOGY JOURNAL**

专题

储涛 等 多维复用硅基集成光子器件

▲图1 基于捷径绝热的4个模式的复用/解复用器件的显微镜照片和部分扫描电镜照片

▲图2 基于捷径绝热的 TE0-TE1-TE2-TE3 复用/解复用的测量结果

用光栅耦合器)是解决 SOI 片与光纤 之间耦合问题的有效方式,但传统 1D结构的光栅耦合器效率受光偏振 态的影响非常严重。为了解决平面 耦合偏振相关性的问题,一种 2D 结 构的偏振分集光栅耦合器被研制出 来,它可以将光纤中任意偏振态的光 耦合到垂直的两个波导上,可以在完 成光纤与芯片的耦合的同时完成光 偏振态的分离,不但减少了片上制作 其他偏振处理器件的必要,并且克服 了单偏振光栅偏振相关性强的弱点, 非常适合在接收芯片部分应用。我 们设计制作的偏振分集光栅耦合器 使用 IME-CMOS 工艺制作, 其测试结 果见图3,耦合效率达到-3.3dB,偏 振相关损耗1.2 dB^[7]。耦合效率仅亚

于Luxtera在2016年发表的结果。

3.2 偏振分束器

同样基于捷径绝热的模式转换,

我们设计并制作了大带宽、高消光比的片上偏振分束器件。相比于以往 文献报道的器件不能在大带宽范围内同时实现高消光比,如图4所示, 我们制作的器件在1520~1620 nm波 长范围内插损小于0.8 dB,消光比大 于25 dB。器件由3个具有相同参数的捷径绝热的模式转换器件组成,工 作原理为横磁波模式(TM0)光通过 模式转换改变端口输出,而TE0则不 会经过模式转换直接输出。在整个 1520~1620 nm测量范围内,TE0和 TM0最大的插损大约为0.8 dB,串扰 小于~25 dB。

3.3 偏振旋转分离器

为实现偏振分集功能,我们设计 并制作了高性能的偏振旋转分离器 件,器件结构包括一个粒子群优化的 双层楔形结构和一个基于捷径绝热 的模式转换分离器件。工作原理为 TMO 经过模式转换分离器件转换成 TEO 并改变端口输出;TEO 直接从另 一端口输出。我们在O 波段设计制 作的偏振旋转分离器件在1 260~ 1 340 nm 波长范围内,器件插损小于 1 dB,串扰小于-22 dB,具体结果如 图 5 所示。

4 结束语

随着大数据时代海量数据的传 输和通信需求越来越大,光波在多维 度上的复用和解复用技术必然会在

、中兴通讯技术 32 2017年10月 第23卷第5期 Oct. 2017 Vol.23 No. 5

多维复用硅基集成光子器件 储涛 等

▲图4 偏振分束器件测量结果

▲图5 波段的偏振旋转分离器件测量结果

多种应用场景越来越受到关注。我 们从波长、模式、偏振等维度复用的 实际研究和应用出发,研制了对应各 种复用功能的多种硅基光电子集成 器件,可以完成光通信和数据传输的 相应功能,并且具有在 CMOS 工艺线 上批量生产的工艺可行性,相信在将 来高密度集成的光通信多维复用体 系中可以得到广泛的应用。

致谢

本论文中,波长复用解复用

AWG/EDG器件的研究由富士通研究 开发中心有限公司的叶彤博士和华 为技术有限公司的付云飞完成,在此 对他们谨致谢意!

参考文献

- YE T, FU Y F, QIAO L, et al. Low–Crosstalk Si Arrayed Waveguide Grating with Parabolic Tapers[J]. Optics Express, 2014,22(26): 31899–31906
- [2] FU Y F, YE T, TANG W J, et al. Efficient Adiabatic Silicon–On–Insulator Waveguide Taper[J]. Photonics Research,2014: 2(3):A41– A44. DOI: 10.1364/PRJ.2.000A41
- [3] WANG J, SHENG Z, LI L, et al. Low–Loss

and Low–Crosstalk 8 × 8 Silicon Nanowire AWG Routers Fabricated with CMOS Technology[J]. Optics Express, 2014, 22(8): 9395–9403

ZTE TECHNOLOGY JOURNAL

专题

- [4] SCIANCALEPORE C, LYCETT R, DALLERY J, et al. Low–Crosstalk Fabrication–Insensitive Echelle Grating Demultiplexers on Silicon– on–Insulator/JJ. IEEE Photonics Technology Letters. 2015, 27(5): 404–497
- [5] YE T, CHU T. Low–Loss and Low–Crosstalk Si Etched Diffraction Gratings with Multi– Point Iterative Optimization (oral)[C]// the 13th International Conference on Group IV Photonics. China: GFP,2016: ThD5
- [6] GUO D F, CHU T. Silicon Mode (de) Multiplexers with Parameters Optimized Using Shortcuts to Adiabaticity [J]. Optical Express,2017, (25): 9160–9170. DOI: 10.1364/OE.25.009160
- [7] WU W K, LIN T H, CHU T, et al. CMOS– Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm[C]// Asia Communications and Photonics Conference. China: OSA, 2016: AS2F.4. DOI: 10.1364/ACPC.2016.AS2F.4

作者简介

储涛,浙江大学信息与电 子工程学院教授;主要研 究领域为集成光电子学和 硅基光子学;先后主持国 家自然科学基金面上/重点 项目、国家重大科学研究 订划、企业合作项目等10 余顶;已发表论文80余篇, 被SCI/EI检索70余篇。

郭德汾,中国科学院大学 博士研究生(浙江大学联 合指导);主要研究领域为 硅基偏振控制和模式复用 解复用光子器件;先后参/ 加国家自然科学基金面上 重点项目、企业合作项目 数项;已发表论文3篇,其 中被SCI/EI检索3篇。

吴维轲 电子工 师; 5編 件; 先所 学星金 论文11 索1篇。

吴维轲,浙江大学信息与 电子工程学院助理工程 师;主要研究领域为单偏 振(多偏振硅基耦合光栅器 件;先后参加国家自然科 学基金面上/重点项目、企 业合作项目数项;已发表 论文1篇,其中被 SCI/EI检 索1篇。