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Evolving to 6G wireless communications, “Internet con⁃
necting things” is becoming “Internet connecting in⁃
telligence”. In order to adapt to this trend, wireless de⁃
vices should be capable of conducting efficient and ro⁃

bust communications and also complete complex services of 
smart applications. However, the current wireless networks 
are trapped in delivering a massive number of signals while as⁃
suring their accuracy, and the limited resources block this evo⁃
lution. The big data technology is a persistently-developing 
paradigm, which facilitates the change of network functions 
from “transmit every bit” to “what and how to transmit”. In 
particular, artificial intelligence (AI) technologies allow intelli⁃
gent devices to pre-process information according to environ⁃
ment and service’s demands. Additionally, forwarding critical 
information in a more efficient and accurate way may support 
complicated AI tasks such as virtual reality, augmented real⁃
ity, and autonomous driving. However, there still exist many 
fundamental research challenges, such as high quality wire⁃
less connectivity as well as high accuracy and robust sensing 
capability, which need to be solved for accommodating AI 
techniques towards 6G wireless communications.

In this special issue, a series of articles are presented to pro⁃
pose innovative solutions to enabling AI techniques over wire⁃
less networks. These papers cover a wide range of topics, includ⁃
ing 6G wireless communication protocols, semantic communica⁃
tions, green energy efficiency concerns, network architecture de⁃
signs, and the application of AI techniques in future wireless 
networks. The call-for-papers of this special issue have brought 
excellent submissions in both quality and quantity. After two-
round reviews, ten excellent papers have been selected for publi⁃

cation in this special issue which is organized as follows.
The first paper titled “Intelligent 6G Wireless Network with 

Multi-Dimensional Information Perception” focuses on the criti⁃
cal issues and proposes three application scenarios in 6G wire⁃
less systems. The intelligent wireless network and information 
perception require a deep fusion of AI and wireless communica⁃
tions in 6G systems. Therefore, the fusion of AI and 6G net⁃
works is discussed for the enhancement of 5G-advanced tech⁃
nologies and future wireless communication systems. The wire⁃
less AI technology architecture with 6G multi-dimensional in⁃
formation perception is then introduced.

The second paper titled “Deep Learning-Based Semantic 
Feature Extraction: A Literature Review and Future Direc⁃
tions” provides an overview of the applications of semantic 
feature extraction in various fields, aiming to provide insights 
into the potential of this technology to advance the develop⁃
ment of artificial intelligence. The applications of semantic 
feature extraction in natural language processing, hyperspec⁃
tral image analysis, disease diagnosis and medical image 
analysis, and autonomous driving are focused. The develop⁃
ment trends and challenges are also explored.

The third paper titled “Content Popularity Prediction via 
Federated Learning in Cache-Enabled Wireless Networks” 
proposes a privacy-preserving algorithm based on federated 
learning (FL) and long short-term memory (LSTM), which is re⁃
ferred to as FL-LSTM, to predict content popularity and re⁃
duce the risk of privacy leakage. The performance of the pro⁃
posed FL-LSTM is close to the centralized LSTM and better 
than other benchmark algorithms in terms of privacy protec⁃
tion. Meanwhile, the caching policy in this paper raises about 
14.3% of the content bit rate.

The fourth paper titled “Federated Learning for 6G: A Sur⁃
vey from Perspective of Integrated Sensing, Communication 
and Computation” contributes to the understanding of FL in 
the context of wireless networks and provides insights into ad⁃
dressing the challenges and optimizing the design for the inte⁃
gration of FL into future 6G networks. This paper provides a 
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comprehensive survey of FL, with special emphasis on the de⁃
sign and optimization of integrated sensing, communication 
and computation (ISCC). Subsequently, the challenges are 
highlighted and the state of the art in potential solutions is re⁃
viewed. Design guidelines are also provided for the incorpora⁃
tion of FL and ISCC. 

The fifth paper titled “Future Vision on Artificial Intelli⁃
gence Assisted Green Energy Efficiency Network” proposes 
AI/machine learning (ML) -assisted energy-saving strategies 
to achieve optimal performance in terms of cell shutdown du⁃
ration and energy efficiency. 5G new radio is designed to en⁃
able denser network deployments, which raises significant 
concerns about network energy consumption. The AI/ML 
based energy saving schemes achieve great performance on 
power consumption and energy efficiency. Moreover, further 
consideration on future wireless communication networks is 
put forward.

The sixth paper titled “Machine Learning Driven Latency 
Optimization for Internet of Things Applications in Edge Com⁃
puting” introduces a machine learning-enabled orchestration 
framework, which utilizes the states of edge resources and ap⁃
plication resource requirements to facilitate a resource-aware 
offloading scheme for minimizing the average latency of 
emerging Internet-of-Things applications. Moreover, a variant 
bin-packing optimization model is further proposed, which co-
locates applications firmly on edge resources to fully utilize 
available resources.

The seventh paper titled “Multi-User MmWave Beam 
Tracking via Multi-Agent Deep Q-Learning” proposes a multi-
user beam tracking algorithm by using a distributed deep Q-
learning method to reduce overhead cost. By online learning 
of users’ moving trajectories, the proposed algorithm learns to 
scan a beam subspace, aiming to maximize the average effec⁃
tive sum-rate. Considering practical implementation, the con⁃
tinuous beam tracking problem is considered as a non-Markov 
decision process and a simplified training scheme of deep Q-
learning with low complexity is developed. Furthermore, a 
scalable state-action-reward is designed for scenarios with dif⁃
ferent users and antenna numbers. 

The eighth paper titled “RIS-Assisted UAV-D2D Communi⁃
cations Exploiting Deep Reinforcement Learning” proposes a 
reconfigurable intelligent surface (RIS) model to rebuild the 
wireless channels for mitigating the strong interference caused 
by line-of-sight (LoS) air-to-ground channels in a device-to-
device (D2D) communication system underlying cellular net⁃
works enabled by unmanned aerial vehicle (UAV). A RIS soft⁃
max deep double deterministic (RIS-SD3) policy gradient 
method is also proposed, which could smooth the optimization 
space as well as reduce the number of local optimizations.

The ninth paper titled “SST-V: A Scalable Semantic Trans⁃
mission Framework for Video” provides a highly-efficient solu⁃
tion to video transmission by proposing a scalable semantic 
transmission algorithm, named scalable semantic transmission 

framework for video (SST-V), which jointly considers the seman⁃
tic importance and channel conditions. Specifically, a semantic 
importance evaluation module is designed to extract more infor⁃
mative semantic features according to the estimated importance 
level, facilitating high-efficiency semantic coding. By further 
considering the channel condition, a cascaded learning based 
scalable joint semantic-channel coding algorithm is proposed, 
which autonomously adapts the semantic coding and channel 
coding strategies to the specific signal-to-noise ratio (SNR).

The last paper titled “UAV Autonomous Navigation for 
Wireless Powered Data Collection with Onboard Deep Q-
Network” proposes to jointly optimize the UAV’s flight trajec⁃
tory, the sensor selection and operation modes in order to 
maximize the average data traffic of all sensors within a wire⁃
less sensor network (WSN) during finite UAV’s flight time, 
while ensuring the energy required for each sensor by wireless 
power transfer (WPT). For the sake of considering a practical 
scenario, the UAV has no prior knowledge of sensor locations. 
Therefore, the deep Q-network (DQN) is employed to execute 
the navigation based on the UAV position, the battery level 
state, channel conditions and current data traffic of sensors 
within the UAV’s coverage area.

To conclude, it is hoped that this special issue will serve as 
a valuable resource for researchers, practitioners, and stu⁃
dents who are interested in AI techniques over wireless net⁃
works. We also hope that it will inspire further research in this 
field, leading to new and innovative solutions that will drive 
the evolution of AI techniques. Finally, we would like to ex⁃
press our sincere gratitude to all the authors, reviewers, and 
editorial staff who have contributed to the success of this spe⁃
cial issue. Hopefully, the articles in this special issue are both 
insightful and informative for prospective readers in the field.
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Abstract: Intelligence and perception are two operative technologies in 6G scenarios. The intelligent wireless network and information per⁃
ception require a deep fusion of artificial intelligence (AI) and wireless communications in 6G systems. Therefore, fusion is becoming a typi⁃
cal feature and key challenge of 6G wireless communication systems. In this paper, we focus on the critical issues and propose three applica⁃
tion scenarios in 6G wireless systems. Specifically, we first discuss the fusion of AI and 6G networks for the enhancement of 5G-advanced 
technology and future wireless communication systems. Then, we introduce the wireless AI technology architecture with 6G multi-
dimensional information perception, which includes the physical layer technology of multi-dimensional feature information perception, full 
spectrum fusion technology, and intelligent wireless resource management. The discussion of key technologies for intelligent 6G wireless net⁃
work networks is expected to provide a guideline for future research.
Keywords: 6G wireless network; artificial intelligence; multi-dimensional information perception; full spectrum fusion
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1 Introduction

From the perspective of 6G vision and requirements, 
there are several typical application scenarios, includ⁃
ing smart cities, intelligent transportation, industrial in⁃
telligence, immersive Extended Reality (XR), holo⁃

graphic communication, sensory interconnection, and inte⁃
grated perception and communications[1–7]. Intelligence and 
perception have become two keywords in 6G scenario applica⁃
tions[8–15]. Therefore, fusion is becoming a typical feature and 
a key challenge that distinguishes 6G from previous genera⁃
tions of communication systems.

Studies on the spectrum are essential for mobile communi⁃
cation systems. In the future, the 6G spectrum will expand to 
frequency bands with more abundant spectrum resources, e.g., 
terahertz and visible light. Larger bandwidth, higher fre⁃
quency and full spectrum technology become the trend of evo⁃
lution. Millimeter wave technology has been supported in the 
5G wireless communication system standards. In the 6G era, 
millimeter wave technology will be mature and widely used. 
At the same time, the exploration of the terahertz band be⁃
comes a popular topic of research on 6G[1–3, 13–15].

For the full spectrum of 6G, we think the coverage of me⁃
dium and low-frequency bands should be mainly guaranteed. 

Millimeter waves and terahertz provide a large bandwidth to 
form a multi-frequency collaborative ubiquitous networking 
pattern. Operators will face more fragmented spectrum re⁃
sources. In order to improve the efficiency of resource utiliza⁃
tion and network operation management, these fragmented 
spectrum resources must be fused. For example, 6G full spec⁃
trum fusion can be achieved by designing architecture and a 
series of key technologies.
2 Key Issues and Scenarios in 6G

Based on the aforementioned vision of 6G and the trend of 
spectrum fusion, we introduce some perspectives on the de⁃
sign of native intelligence systems for 6G. Intelligence, as a 
key capability of wireless communication networks, is becom⁃
ing an enabling technology for emerging businesses. From 5G 
to 6G, artificial intelligence (AI) will complete the role trans⁃
formation from assistance to endogeny. The fundamental de⁃
sign principle of wireless AI is to create a future high-
efficiency and sustainable network. We need to efficiently uti⁃
lize the fragmented spectrum and improve energy efficiency.

Therefore, we introduce three key scenarios in 6G for the fu⁃
sion of AI and networks:

1) Scenario 1: assisting the enhancement of 5G-advanced 
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technology to improve network efficiency
This scenario mainly includes the existing network archi⁃

tecture based on 5G evolution, defining the wireless AI tech⁃
nology framework, mechanisms and signaling processes to 
achieve the integration of traditional technologies and AI, 
boost the technology enhancement of 5G evolution, and im⁃
prove the efficiency of networks and system performance. 
Currently, the initial research work on intelligent air inter⁃
face is underway in 3GPP Release 18. It lays the ground⁃
work for the evolution of 5G systems and the design of 6G 
systems.

2) Scenario 2: AI native enabling typical high-value appli⁃
cations

Emerging 6G businesses, such as metaverse, immersive 
XR, digital twins and fully automated driving, will pose high 
requirements for future wireless communication systems. An 
AI native wireless network in 6G will become a key enabling 
technology for high-value application scenarios to meet the de⁃
mands of high-value application scenario users for the ulti⁃
mate experience and ultra-high network operational efficiency.

3) Scenario 3: AI native building efficient and sustainable 
networks for operators

With the goal of full spectrum fusion in 6G, AI native wire⁃
less networks will address the super-high complexity and chal⁃
lenges of network management and operation brought about by 
multi-dimensional network deployment in future mobile com⁃
munication systems. AI native will be used to realize resource 
awareness and dynamic control of 6G wireless networks with 
multiple operators, multiple frequency bands and multiple 
modes, improving network energy efficiency and resource utili⁃
zation efficiency and building a green, efficient and sustain⁃
able 6G network.
3 Wireless AI Technology Architecture

Therefore, we design and propose a 6G wireless AI ar⁃
chitecture for multi-dimensional information perception, 
which consists of three aspects: physical layer technology 
for multi-dimensional feature information perception, intelli⁃
gent full-spectrum fusion, and intelligent wireless resource 
management.

Achieving the deep integration between AI and wireless 
communications requires the support of big data of wireless 
communications, which enables AI to perceive, extract and in⁃
tegrate multi-dimensional information to solve problems with 
high complexity. Data is the essential requirement of the de⁃
sign of wireless communication systems with internal AI. Fac⁃
ing the multi-objective optimization problems, future wireless 
AI will be based on multi-dimensional information perception, 
e.g., scene information, service information, network state in⁃
formation, terminal measurement information, and so on.

In addition, the current design of the wireless protocol stack 
and the demand for multi-dimensional information perception 
from the bottom to the top are contradictory. Therefore, when 

designing the 6G protocol stack, we need to consider matching 
the requirements of multi-dimensional information perception 
for wireless AI. In this section, we introduce the design from 
three aspects in detail.
3.1 Multi-Dimensional Feature Information Perception

We consider the physical layer technology of multi-
dimensional feature information perception to be achieved 
through AI-driven feature extraction, perception, and fusion of 
multi-dimensional wireless data (e. g., channel impulse re⁃
sponse, received signal power, and so on) in the frequency, 
time, space, or angle domain. This physical layer technology 
of multi-dimensional feature information perception includes 
AI-driven extra large-scale massive multiple-input multiple-
output (XL-MIMO) technology and AI-enabled localization 
technology.
3.1.1 AI-Driven XL-MIMO Technology

AI-based XL-MIMO technology, such as intelligent channel 
state information (CSI) enhancement and intelligent beam 
management, can integrate with some traditional functions 
through AI, achieving the replacement of certain functional 
modules and helping to improve the utilization efficiency of 
network resources and system performance.

Different from the codebook-based CSI acquisition method 
in traditional wireless communication systems, intelligent CSI 
enhancement technology includes intelligent CSI compression 
feedback and intelligent CSI prediction. Intelligent CSI feed⁃
back enhancement can increase the number of reference sig⁃
nals used for obtaining channel state information. As shown in 
Fig. 1, AI technology is used to compress and reconstruct the 
multi-dimensional channel feature information of CSI feed⁃
back, reducing the overhead of air interface CSI feedback or 
improving CSI reconstruction accuracy.

Intelligent CSI feedback technology usually deploys an AI 
model at both the base station (BS) side and the user equip⁃
ment (UE) side, including CSI compression and CSI recon⁃
struction. During the stage of training an AI model, the UE es⁃
timates multi-dimensional channel feature information based 
on reference signals and feeds the multi-dimensional channel 
feature information back to the BS as input and label data for 

▲Figure 1. Enhancement of artificial intelligence (AI)-based CSI feedback
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the training of the AI model. During the inference stage of the 
AI model, the UE sends the estimated channel feature vector 
to the encoder for CSI compression. Then, the compressed CSI 
codeword is reported to the BS. The BS uses the decoder to re⁃
construct the channel feature vector from the codeword that is 
fed back. The channel feature vector is used for precoding. 
We propose to utilize AI techniques to extract CSI features in 
a fully efficient manner, with lower inference complexity but 
comparable performance to traditional codebook methods. 
With the application of intelligent CSI feedback technology in 
dense urban areas and other scenarios, we estimate that more 
than 60% of uplink feedback overhead can be saved[16]. In ad⁃
dition, further improvement in compression performance can 
be achieved through intelligent retraining and optimization of 
quantization modules of AI models.

In traditional methods, time delay exists among CSI mea⁃
surement, feedback and precoding, which results in a system 
performance loss since the current wireless channel uses an 
outdated CSI. This problem is more pronounced in high-speed 
mobility scenarios. As shown in Fig. 2, intelligent CSI predic⁃
tion technology can utilize channel correlation features in the 
time domain to predict future CSI based on AI algorithms. In 
addition, CSI prediction technology can be enhanced by ex⁃
ploiting multi-dimensional channel feature information such 
as multi-user and bidirectional channel reciprocity. The tradi⁃
tional codebook information and uplink reference signal mea⁃
surement results are used as inputs to extract and fuse fea⁃
tures through AI algorithms for CSI prediction, thereby im⁃
proving the accuracy of CSI prediction.

The intelligent CSI enhancement technology that perceives 
multi-dimensional feature information has broad application 
prospects and is of great significance for improving network 
performance and resource utilization efficiency.

The widespread use of massive antenna arrays poses great 
challenges to future beam management. As shown in Fig. 3, in⁃
telligent beam management can use AI algorithms to predict 
beams in the spatial and temporal domains, reduce beam mea⁃
surement pilot overhead and measurement latency, and signifi⁃
cantly improve beam management accuracy and system perfor⁃
mance. Fig. 3(a) illustrates our proposition that implements AI 
algorithms to solve the conventional beam management prob⁃
lem through a classification model at high frequency, which 
can significantly reduce the required number of beam direc⁃
tions for measurement. Specifically, instead of measuring 32 
BS beam directions and eight UE beam directions as in tradi⁃
tional methods, measuring only eight and four beam directions 
for the BS and UE respectively is sufficient. This reduction in 
measurement time by 87.5% results in an improved beam pre⁃
diction accuracy of more than 45%[17]. Therefore, AI-based 
beam management can provide new ideas for defining mecha⁃
nisms for future ultra-high frequency XL-MIMO beam manage⁃
ment, simplifying relevant signaling processes while providing 
excellent prediction performance.

3.1.2 AI-Enabled Precision Positioning Technology
Traditional positioning technology mainly solves the prob⁃

lem of indoor positioning, and its main idea is to calculate the 
position of a user based on the measurement of multiple sta⁃
tion points, especially the line-of-sight (LOS) path. Common 
methods include the time of arrival (TOA), time difference of 
arrival (TDOA), multi-round trip time (Multi-RTT), and so on.

The introduction of AI technology is mainly used to solve 
the impact of non-line-of-sight (NLOS) paths on positioning 
calculation and the problem of inaccurate positioning in heavy 
NLOS environments. By utilizing AI to extract multi-
dimensional feature information of measurement signals and 
conduct binary classification for LOS and NLOS paths, the in⁃
terference of NLOS path information on positioning calcula⁃
tion can be mitigated. The CSI with higher LOS probability is 
used to calculate the UE position, which can improve position⁃
ing performance, especially when there are few indoor anten⁃
nas to improve positioning accuracy.

In scenarios with heavy NLOS, traditional positioning algo⁃
rithms are no longer applicable because the measurement sig⁃

▲Figure 2. AI-based CSI prediction

▲Figure 3. Intelligent beam management
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nals between the UE and BS have few LOS paths. AI algo⁃
rithms can learn the mapping between multi-dimensional fea⁃
ture information and location information. We propose that in 
heavy NLOS indoor factory scenarios, using AI algorithms to 
extract and fuse multi-dimensional measurement signal fea⁃
tures such as channel impulse response (CIR), TOA and refer⁃
ence signal received power (RSRP) can improve the position⁃
ing accuracy from 10 meters to decimeter level.[18]

As shown in Fig. 4, there are two ways to integrate AI with 
positioning technology. One is to input multi-dimensional in⁃
formation such as CSI, reference signal received power, and 
delay power spectral estimation value into the AI model, and 
extract and fuse features through the model to directly output 
the final positioning coordinates. The other method is to com⁃
bine AI with traditional positioning algorithms, which is used 
to identify and optimize the input information of traditional po⁃
sitioning algorithms, thereby improving positioning accuracy.

AI models can practically be deployed in the location man⁃
agement function (LMF), the BS side, or the UE side for as⁃
sisted positioning. When an AI model is deployed in the LMF 
as an input node, the BS and UE need to provide feedback on 
the required measurement positioning information, which in⁃
troduces additional delay and overhead due to the large feed⁃
back overhead. When the AI model is deployed at the BS or 
UE side, the deployed node can, based on AI, select location-
related measurement information from some paths with high 
LOS probability or optimized positioning measurement infor⁃
mation and feedback it to the LMF. The LMF generates the ac⁃
curate position coordinates of the UE, which reduces the delay 
and feedback overhead. As the BS and UE need to collect 
data for model training, the intelligent positioning enhance⁃
ment technology at the BS side has a more important value of 
research, considering that UE has relatively weaker comput⁃
ing and storage resources and the mobility problem of UE will 
lead to the storage of a large amount of model information.
3.2 Intelligent Full Spectrum Fusion Architecture

6G full spectrum fusion will expand and improve the dimen⁃
sion and complexity of wireless network management. AI na⁃

tive can achieve intelligent full spectrum fusion for multi-
tasking, solve the spectrum fragmentation problem faced by 
operators, and create efficient and sustainable networks.

In terms of architecture design, the basic principles are to 
achieve layered and distributed decomposition of complex 
problems through multi-level architecture. One is to virtualize 
physical resources such as spectrum resources, computing 
and storage resources through centralized and distributed com⁃
puting and storage resources, and to face 6G different scenes 
and business needs; unified resource packaging is achieved 
through intelligent control methods to form virtual resource 
units and achieve full spectrum virtual resource fusion. The 
second point is to enable intelligent and flexible loading of the 
virtual protocol stack through AI native and shield the differ⁃
ences in multi-tasking in the protocol stack, frame structure 
and other aspects; in this way full spectrum protocol stack fu⁃
sion will be achieved and channels between various protocol 
stack layers will be opened to achieve cross-layer optimiza⁃
tion. The third point is to enable multi-task collaboration 
through AI native, to effectively integrate multi-level comput⁃
ing, communication, and storage resources through cloud-
network-edge-terminal deep fusion, using a unified resource 
model and service-oriented distributed architecture, and to 
achieve intelligent collaborative networking of multiple fre⁃
quency bands, multiple systems and multiple operators.

Intelligent full spectrum fusion can specifically include 
multi-access fusion, communication and sensing fusion, and 
fusion of multiple duplex modes. In actual network operation 
and management, the optimization goals of multi-spectrum 
fusion are multi-dimensional. The network needs to carry out 
multi-task collaboration to avoid strategy conflicts caused by 
individual decisions, thus realizing the intelligent full spec⁃
trum fusion mechanism of future 6G networks. Multi-task 
driven intelligent full spectrum fusion ultimately virtualizes 
physical resources into cloud-based resource pools, as shown 
in Fig. 5. Targeting various scenarios and business require⁃
ments of 6G, resources are packaged and formed into virtual 
space, time, frequency, and computing resource units for 
user allocation through intelligent regulation. Through the in⁃
telligent and flexible loading of AI native enabled virtual 
protocol stack, the fusion of the full spectrum protocol stack 
is achieved.
3.2.1 Intelligent Multi-Access Fusion

The current status of mobile communications is character⁃
ized by the coexistence of multiple generations of communica⁃
tion standards. It can be predicted that in the future, networks 
will be in a long-term situation of coexistence of 4G, 5G and 
6G multi-frequency bands and multi-access standards. Emerg⁃
ing services pose greater challenges to the network in terms of 
transmission rate, delay, reliability, security, and so on. Based 
on the machine learning (ML) framework and utilizing various 
AI learning algorithms such as federated learning and rein⁃▲Figure 4. AI-based precision positioning technology
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forcement learning, intelligent multi-access technology maxi⁃
mizes the network capacity in terms of coverage, capacity, en⁃
ergy efficiency and other aspects by integrating the advan⁃
tages of multi-frequency bands and multi-standard networks 
through AI native, which improves the operational efficiency 
of the network.

For future business scenarios, multi-access convergence is 
mainly reflected in the need for AI-native solutions to the fol⁃
lowing fusion requirements:

1) With the scarcity of low-frequency wireless resources, 
the 6G frequency band will extend to significantly higher fre⁃
quencies than 4G and 5G networks, forming a multi-frequency 
collaborative networking scenario. High frequencies have the 
advantage of large bandwidth and high transmission rates, but 
suffer from poor coverage due to path loss and penetration 
loss. Intelligent multi-frequency collaborative networking can 
be achieved by fusing the 6G high-frequency band with the 
4G/5G network frequency band, providing both wide-area cov⁃
erage and high transmission rates.

2) 6G networks and wireless local area networks (WLAN) 
can be intelligently integrated for indoor environments and 
vertical industries. When 6G and WLAN are fused at the ac⁃
cess network level, WLAN will access the 6G base station at 
the wireless access network side to obtain business flows and 
forward them to terminals. AI-driven intelligent multi-access 
collaborative technology can achieve load and environment 

awareness for multi-access networks, enabling 
intelligent flow distribution for 6G and WLAN 
business flows.

Finally, multi-connection of 6G+5G/4G+
WLAN can achieve the fusion of advantages of 
all network standards. Intelligent network archi⁃
tecture design and AI algorithm solutions that 
combine centralized and distributed control are 
urgently needed for wireless resource manage⁃
ment and dynamic adjustment between mul⁃
tiple standards to meet the requirements of fu⁃
ture 6G businesses.
3.2.2 Intelligent Fusion of Communication and 

Sensing
With the development of the fusion of com⁃

munication and sensing towards 6G full spec⁃
trum, intelligent wireless air interfaces will 
achieve multi-dimensional feature information 
extraction, sensing, and fusion of multiple com⁃
munication signals, communication and sens⁃
ing signals and multiple sensing signals. The 
full spectrum fusion technology for AI native 
and sensing will realize the mutual promotion 
and fusion development of intelligence and 
sensing, and further enhance the physical layer 
of 6G wireless networks and wireless resource 

management technology. In practical applications, AI-based 
positioning technology will be limited by the wireless datasets 
obtained by traditional communication signals. Towards 6G, 
emerging services such as immersive XR, metaverse and holo⁃
graphic communication will require higher precision position⁃
ing. Extending to the 6G full spectrum, the collaborative and 
accurate multi-frequency perception positioning with fusion 
sensing signals will greatly improve positioning accuracy and 
significantly promote the development of future 6G intelligent 
factories, autonomous driving, smart homes and other applica⁃
tions with wireless AI big data.
3.2.3 Intelligent Fusion of Duplex Modes

With the fusion of various intelligent wireless duplex 
modes, future networks may support the coexistence of mul⁃
tiple duplexing modes, such as traditional duplexing, flexible 
duplexing and full duplexing. In multi-frequency cooperative 
scenarios, CSI, beam direction information and terminal trajec⁃
tory information working in multi-frequency, same-frequency 
and adjacent-frequency bands have explicit or implicit correla⁃
tions. AI-driven XL-MIMO technology may use multi-
frequency cooperative networking and flexible duplexing fu⁃
sion mechanisms to obtain higher-dimensional feature infor⁃
mation, further enabling AI-driven improvements in network 
resource utilization efficiency and system performance. In 
terms of intelligent CSI acquisition and intelligent beam man⁃

▲Figure 5. Multi-task driven intelligent full spectrum fusion
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agement, intelligent pooling of multi-frequency and large 
bandwidth resources can be fully utilized for resource alloca⁃
tion and variable-rate AI model architecture. This fusion of 
multi-dimensional information such as geographic location 
and user orientation can meet intelligent high precision, high 
efficiency, and low-power consumption requirements of future 
XL-MIMO technology.
3.3 Intelligent Radio Resource Management

In 6G systems, AI native will become an engine for wireless 
networks to achieve self-learning, self-operation, self-
maintenance and self-evolution. By leveraging multi-task col⁃
laborative optimization and intelligent ubiquitous multi-level 
network resource coordination, intelligent wireless resource 
management can be enabled, and deep perception of user sce⁃
narios and collaborative optimization of network services can 
be achieved, effectively enhancing wireless system perfor⁃
mance and fully ensuring user service experience. To achieve 
intelligent wireless resource management, a multi-level archi⁃
tecture design is required to build a self-intelligent wireless 
network, which mainly includes the following three aspects:

1) Intelligent multi-level network resource collaborative 
management

AI technology enables 6G wireless networks, which can 
timely perceive user needs through real-time data collection 
and analysis, activate services on demand and carry out multi-
objective joint optimization to promote the network, to achieve 
the best balance between system energy consumption and per⁃
formance. The deep fusion of AI technology and 6G wireless 
networks includes the following several key points:

• Establishing an efficient data knowledge graph, designing 
a universal database storage model, preprocessing the col⁃
lected data by classification, establishing a dataset sharing 
mechanism, fully mining the features in the data, and achiev⁃
ing the accurate perception of user needs;

• Implementing multi-scenario and multi-task collaborative 
optimization, which integrates and fully utilizes the data and 
computing resources in the network and effectively avoids du⁃
plicate data training and maximizes system performance;

• Constructing an AI model repository to improve the ro⁃
bustness and generalization of AI models, providing technical 
support for diversified network optimization services, and as⁃
sisting the network in achieving self-optimization and self-
evolution.

2) Network optimization with multi-task collaboration
By deeply integrating 6G wireless networks with AI technol⁃

ogy and based on big data in wireless networks, the optimiza⁃
tion problems in such areas as mobility management, network 
energy conservation and service offloading can be effectively 
solved. With the collection and management of global network 
data, AI algorithms can process and train user measurement 
information, network configuration parameters, service re⁃
quirements and traffic, as well as external environmental in⁃

put information to accurately predict user movement trajecto⁃
ries and traffic of the BS. This can recommend more reason⁃
able network configurations and strategies to effectively en⁃
sure the continuity of user services in the network, while re⁃
ducing the energy consumption of the BS and lowering energy 
costs of the operator. Adaptive and predictive AI and ML algo⁃
rithms can help networks establish autonomy, break through 
traditional technical barriers, and create high-quality intelli⁃
gent 6G applications[19].

As the mobile network is composed of various overlapping 
network services, all service characteristics and goals need to 
be considered. Taking wireless network optimization as an ex⁃
ample, the optimization goals in actual networks are multi-
dimensional, so network optimization requires multi-task col⁃
laboration to avoid configuration conflicts caused by separate 
decisions and achieve the global optimization of the wireless 
communication system, thereby satisfying user needs for ex⁃
treme differentiation and high-quality service experience.

3) Deep-aware network service collaborative optimization
Intelligent wireless resource management will be based on 

multi-dimensional information of AI native scenarios and busi⁃
nesses, network capability openness and native perception ca⁃
pability of the network to enable the collaborative optimization 
of the network and businesses[20]. This will realize the intelli⁃
gent wireless network slicing resource management, mobility 
management and network energy saving.

Network slicing is a key technology for operators to support 
on-demand networking and resource scheduling for both 
business-to-business and business-to-customer services. In or⁃
der to provide extremely differentiated end-to-end service 
quality assurance for 6G, AI-driven intelligent wireless re⁃
source management will break down the barriers between ser⁃
vices and wireless network perception. We suggest that intelli⁃
gent resource scheduling can be used to optimize wireless 
slice resource allocation based on the reinforcement learning 
framework and through learning, perception and prediction of 
dynamic wireless environments, application scenarios, and 
multi-dimensional user business information. This may signifi⁃
cantly improve network resource utilization efficiency and en⁃
sure service experience for different priority businesses[21–23]. 
In addition, lightweight and distributed intelligent slice re⁃
source management utilizing algorithms such as small sample 
learning, transfer learning, federated learning and collective 
learning is an important research direction for the future, for 
the sake of user behavior and business privacy, information se⁃
curity, and distributed deployment of computing and storage 
resources in the network.

6G networks have higher dynamism, multi-layering and di⁃
mensionality, which leads to more frequent inter-cell hando⁃
vers, posing huge challenges to 6G network mobility manage⁃
ment. On the one hand, a cell-free network architecture design 
can be used to reduce the frequent interaction of inter-cell 
handover signaling. On the other hand, with the AI native ca⁃
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pabilities of the network, intelligent mobile trajectory predic⁃
tion can be achieved for terminals, deducing the optimal inter-
cell handover scheme and thereby ensuring communication 
connectivity and dynamic load balancing of the network. AI 
can use deep reinforcement learning to solve complex 
decision-making problems and optimize inter-cell handover 
strategies in real time, minimizing transmission latency and 
ensuring reliable wireless connections. In the future, in large-
scale vehicle-to-vehicle communication scenarios of fully au⁃
tonomous driving, 6G networks need to meet the high-speed 
mobility and latency-sensitive requirements of vehicles. AI 
technology can learn user behavior, such as scenes and ve⁃
hicles, through deep learning and long short-term memory 
(LSTM) networks, predict the future motion state and trajec⁃
tory of a period of time, and effectively avoid frequent hando⁃
vers and handover failures[24].

The introduction of 6G millimeter-wave and terahertz multi-
frequency and high-bandwidth will increase network operation 
energy consumption and carbon emissions. With the increase 
in ultra-high-frequency BS coverage density and the diversity 
of business requirements of the UE, the tidal phenomenon of 
6G communication demands will become more prominent, 
leading to large energy consumption for the network when BSs 
are in low-traffic periods in the ultra-dense networking sce⁃
narios. Therefore, multi-dimensional scene and business infor⁃
mation perception at the BS side is necessary to achieve adap⁃
tive adjustment of wireless network scene businesses. Through 
deep learning and LSTM based on the spatiotemporal correla⁃
tion of historical demands of the BS, the future business and 
traffic can be predicted[25], and a reinforcement learning net⁃
work can be used to design semi-static or dynamic BS switch-
off energy-saving states. Through a dynamic balance between 
the user business guarantee and network energy-saving multi-
BS collaborative intelligent networking strategy, overall net⁃
work energy consumption can be reduced.
4 Conclusions

In this paper, we propose a wireless AI technology architec⁃
ture with multi-dimensional information perception to solve 
the key challenge to developing AI native 6G systems, which 
includes multi-dimensional feature information perception 
technology in the physical layer, intelligent full spectrum fu⁃
sion technology, and intelligent wireless resource management.

At present, ongoing studies in 3GPP focus on integrating AI/
ML with traditional physical layer techniques and radio ac⁃
cess network level signaling enhancement. This paper pro⁃
vides our thoughts and a guideline on the roadmap of the evo⁃
lution of 5G-Advanced to the intelligent 6G wireless network. 
The time left to study and clarify the integration of AI/ML with 
B5G or design an AI-native 6G RAN is limited. Researching 
the proposed intelligent radio resource management and intel⁃
ligent full spectrum fusion technology such as distributed 
learning-based technologies and AI/ML-based mobility en⁃

hancement is crucial for better preparation for 6G. Relevant 
research results show that AI and ML are powerful tools for im⁃
proving the performance of existing or future wireless commu⁃
nication systems. It will be exciting to see the development of 
6G wireless systems in the coming years, which will be built 
upon the foundation of the proposed application scenarios and 
wireless AI technology architecture.
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Abstract: Semantic communication, as a critical component of artificial intelligence (AI), has gained increasing attention in recent years due 
to its significant impact on various fields. In this paper, we focus on the applications of semantic feature extraction, a key step in the semantic 
communication, in several areas of artificial intelligence, including natural language processing, medical imaging, remote sensing, autono⁃
mous driving, and other image-related applications. Specifically, we discuss how semantic feature extraction can enhance the accuracy and ef⁃
ficiency of natural language processing tasks, such as text classification, sentiment analysis, and topic modeling. In the medical imaging field, 
we explore how semantic feature extraction can be used for disease diagnosis, drug development, and treatment planning. In addition, we in⁃
vestigate the applications of semantic feature extraction in remote sensing and autonomous driving, where it can facilitate object detection, 
scene understanding, and other tasks. By providing an overview of the applications of semantic feature extraction in various fields, this paper 
aims to provide insights into the potential of this technology to advance the development of artificial intelligence.
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1 Introduction

Artificial intelligence (AI) has become a rapidly growing 
field in recent years, with semantic communications 
being a critical component of AI[1–3]. Semantic commu⁃
nication has gained increasing attention in recent years 

due to its significant impact on various fields[4–7]. It involves 
the recognition of semantics and understanding of human lan⁃
guage, thereby enabling faster and more accurate transmission 
of information. The significance of the semantic communication 
lies in its ability to improve communication efficiency, provide 
more accurate information, and convey intentions more effec⁃
tively. Deep learning-based semantic feature extraction plays a 
critical role in enabling effective communications by extracting 
meaningful features from data and encoding them in a way that 
can be easily transmitted and interpreted by agents[7–8]. Its im⁃
portance has been recognized in a wide range of AI domains, in⁃
cluding natural language processing (NLP), medical imaging, 
remote sensing, and autonomous driving.

This survey paper focuses on semantic feature extraction, 
which is a key step in semantic communications, providing a 
comprehensive literature review of its applications in various 

AI domains. This paper aims to review the current research 
status and development trend of deep learning-based semantic 
feature extraction.

Firstly, we introduce the concept and research background 
of semantic feature extraction, including the technical basis of 
speech interaction, NLP, sentiment computing, knowledge 
graph and machine translation[9–12].

Secondly, we introduce in detail the current research status 
of deep learning-based semantic feature extraction applica⁃
tions, including speech interaction applications based on 
speech recognition, intelligent dialogue systems based on 
NPL, sentiment computing applications based on sentiment 
analysis, intelligent question answering systems based on 
knowledge graph and cross-language interaction applications 
based on machine translation[13–18].

Finally, we discuss the limitations of AI-driven semantic 
communication applications in actual applications and future 
development directions, including technical difficulties, data 
problems, security and privacy issues, as well as the applica⁃
tion scenarios and commercial value of AI-driven semantic 
communication applications in the future.
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2 Deep Learning-Based Semantic Feature 
Extraction Methods in Multiple Fields
AI technology, such as deep learning methods, plays a sig⁃

nificant role in semantic feature extraction. The process of se⁃
mantic feature extraction can be divided into two categories: 
the NLP-based and image-based.

NLP-based semantic feature extraction involves computer 
processing of natural language, including speech recognition, 
text classification, named entity recognition, part-of-speech tag⁃
ging, dependency analysis, and semantic role labeling[9–12]. It 
also includes knowledge graphs that provide a graphical repre⁃
sentation of knowledge consisting of entities, attributes, and re⁃
lationships[13–15]. Additionally, sentiment analysis techniques 
are used to analyze sentiment information contained in text, in⁃
cluding sentiment recognition and sentiment analysis[16–18]. Se⁃
mantic representation techniques focus on converting natural 
language into a form that can be processed by computers, such 
as word vector representation, sentence vector representation, 
semantic role labeling, and semantic dependency analy⁃
sis[19–22]. Together, these technologies form the technical system 
of semantic communication and enable computers to better un⁃
derstand the meaning and semantic information of natural lan⁃
guage, leading to better semantic communications.

In the computer vision, semantic communication technolo⁃
gies include image recognition, target detection, visual seman⁃
tic segmentation, image classification, image retrieval, and im⁃
age clustering[23–24]. Image recognition utilizes machine learn⁃
ing and deep learning to recognize and classify objects in im⁃
ages[25–26]. Target detection involves using machine learning to 
detect specific targets in images, such as faces or text, and iden⁃
tifying their characteristics[27]. Visual semantic segmentation in⁃
volves segmenting objects in images into different categories, 
shapes, and colors[28–30]. Image classification allocates images 
to different categories based on the objects present in them. Im⁃
age retrieval retrieves images related to user input from an im⁃
age database[31–32]. Image clustering involves grouping similar 
images according to object shape, color, and other characteris⁃
tics to improve image management[33–34]. These technologies le⁃
verage deep learning and machine learning to improve the accu⁃
racy and efficiency of image processing.

Next, we will describe in detail the application of semantic 
feature extraction in five explicit scenarios and a summary is 
shown in Table 1.
2.1 Natural Language Processing

Semantic feature extraction plays a crucial role in natural 
language processing and has various applications across nu⁃
merous downstream tasks[35–36]. These tasks include informa⁃
tion extraction[37–38], sentiment analysis[39–40], and knowledge 
graph construction[41]. Gaining a better understanding of us⁃
ers’ semantic expressions allows for more efficient processing 
of their queries and accurate information provision. In named 
entity recognition (NER)[42], for instance, it is essential to iden⁃

tify entities within sentences. Generally, these entities exhibit 
distinct semantic features, such as being nouns. By accurately 
recognizing these features, more effective NER methods can 
be developed. Similarly, sentiment analysis relies heavily on 
semantic feature extraction. This process involves identifying 
mentions (typically nouns) and classifying their sentiment po⁃
larities (usually adjectives). Part-of-speech tagging serves as 
an explicit semantic feature, while implicit features can also 
be calculated using deep learning techniques based on word 
embeddings. In their study, BAO et al. [43] proposed a deep 
learning-based sentiment analysis method, employing a meta-
based self-training approach with a meta-weighter. They 
trained a teacher model to generate in-domain knowledge (se⁃
mantic features) for supervised learning, using the generated 
pseudo-labels in a student model. Knowledge graph construc⁃
tion often encompasses multiple tasks, such as named entity 
recognition[44], relation extraction[45], and anaphora resolu⁃
tion[46]. In their research, HE et al. [41] proposed a multi-task 
framework for constructing knowledge graphs. They employed 
a shared encoder to extract common semantic features for all 
mentioned tasks. More specifically, they developed an end-to-
end information extraction system using a multitask-based arti⁃
ficial neural network model for constructing genealogical 
knowledge graphs from online obituaries. In conclusion, the 
application of semantic feature extraction in the field of natu⁃
ral language processing enhances its intelligence, facilitating 
a deeper understanding of users’ semantic expressions. This, 
in turn, enables more efficient processing of user queries and 
the provision of more accurate information.
2.2 Hyperspectral Image Analysis

Semantic communication in the application of remote sens⁃
ing images is a technique used to extract information from 
data acquired by hyperspectral imaging sensors[47]. Hyperspec⁃
tral imaging sensors collect data in many narrow, contiguous 
spectral bands, essentially producing a 3D data cube with two 
spatial dimensions and one spectral dimension[48]. Hyperspec⁃
tral image analysis involves processing this data cube to ex⁃
tract information about the materials or objects in the imaged 
scene. The main techniques of hyperspectral image analysis 
include spectral unmixing, classification, and anomaly detec⁃
tion. Firstly, spectral unmixing separates the contributions of 
different materials in each pixel of the image. The work in 
Ref. [49] proposed a dynamical model for unmixing a time se⁃
ries of hyperspectral images, with a simplified version of the 
model used to derive an efficient spectral unmixing algorithm 
that is demonstrated on synthetic and real multi-temporal hy⁃
perspectral images. The work in Ref. [50] proposed a new 
method for solving the sparse hyperspectral unmixing problem 
without relaxation, using a multi-objective optimization ap⁃
proach and a binary coding technique, which is demonstrated 
to be effective on both synthetic and real hyperspectral datas⁃
ets. Secondly, the hyperspectral image classification assigns 
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each pixel to a particular material or object class. The work in 
Refs. [51] and [52] proposed a method for improving hyper⁃
spectral image classification performance by combining mul⁃
tiple features in the same semantic space with local and non-
local spatial constraints using an extended Markov random 
field model. The work in Ref. [53] proposed a new method for 
hyperspectral image classification using adaptive spatial parti⁃
tion of pixels into clusters via group sparse coding that inte⁃
grates spectral and spatial information to improve classifica⁃
tion accuracy and provide distinctive classification maps. 
Lastly, anomaly detection identifies pixels with unusual spec⁃
tral characteristics that may indicate the presence of a target 
material. The work in Ref. [54] proposed a unified detector 
anomaly detection network (AUD-Net) inspired by few-shot 
learning to perform anomaly detection across multiple hyper⁃

spectral images (HSIs) without repeated training, which ad⁃
dresses the challenges of generalization to different HSIs with 
different spectral sizes and achieves strong generalization. Hy⁃
perspectral image analysis has applications in a wide range of 
fields, including remote sensing, environmental monitoring, 
mineral exploration, agriculture, and biomedical imaging. In 
conclusion, the application of semantic communications in re⁃
mote sensing images can greatly enhance the user’s under⁃
standing and provide more accurate information, making the 
remote sensing image analysis more intelligent and thus better 
managing the local resources.
2.3 Clinical Application

In recent years, the application of semantic communication 
technology in the medical field has become increasingly popu⁃

▼Table 1. Semantic communication application scenarios

Scenario

Hyperspectral image

Medical field

Natural language 
processing

Task

Classification

Object 
detection

Classification

Segmentation
Clinical 

prediction

Sentiment 
analysis

Knowledge 
graph

Named entity

Relation 
extraction

Method

Markov random field
Group sparse coding

Semantic manifold learning
Multi-view noisy learning

Few-shot learning
Vision transformer
Multi-task learning

Uncertainty-based model
Multi-instance learning

Segmentation network
Representation learning

Information theory
Prompt tuning

Meta-learning
Meta-learning
Multi-task learning
Multi-task learning

Few-shot learning
Prompt tuning

Semi-supervised learning
Continual learning

Model 
Name
NE-

MFAS[51]

MSKGSC[53]

MFAS[52]

MOL[71]

AUD-Net[54]

i-ViT[66]

MTL-
CRD[68]

UMA[69]

HIB[67]

W-Net[70]

CSEDrug[61]

DAPSNet[60]

Survey[40]

MSM[39]

MLB[43]

MTL-2[41]

MTL-1[37]

Copner[42]

VPP[36]

UG-MCT[45]

JCBIE[44]

Model Structure

SVM + MRF
Kernel sparse representation

SVM + MRF
VGG16 + MIL

ResNet + multi-head attention
Vision transformer

A semi-supervised multi-task learning framework
Uncertainty-based model acceleration

Information bottleneck + hierarchical multi-instance 
learning

Composite high-resolution network
Pretrain + RNN

RNN + attention + information bottleneck
Transformer

Teacher-student/BERT
BERT

Bi-LSTM
Bi-LSTM

BERT
BERT
BERT
BERT

Year

2017
2016
2016
2023
2022
2021
2023
2022
2022
2021
2022
2023
2022
2022
2021
2021
2019
2022
2023
2022
2022

AUD-Net: a unified detector anomaly detection network 
BERT: Bidirectional Encoder Representations from Transformers 
Bi-LSTM: Bidirectional LSTM
CRD: cancer region detection 
CSEDrug: a comprehensive DDI controllable model 
DAPSNet: Dual Attention and Patient Similarity Network 
HIB: a multi-instance learning model 
I-ViT: an integer-only quantization scheme for vision transformers 
JCBIE: joint continual learning biomedical information extraction 
LSTM: long short-term memory 
MFAS: Multimodal Fusion Architecture Search 
MIL: multiple instance learning 
MLB: a meta-learning model 

MOL: multi-view noisy learning 
MRF: modified random forest 
MSKGSC: a group sparse coding model 
MSM: meta-based self-training method with a meta-weighter 
MTL: multi-task learning 
NE: network element 
RNN: recurrent neural network 
SVM: support vector machine 
UG-MCT: Uncertainty-Guided Mutual Consistency Training framework 
UMA: uncertainty-based model acceleration 
VGG16: a convolution neural network architecture 
VPP: virtual prompt pre-training model 
W-Net: a segmentation network
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lar[55–57]. In Refs. [55] and [56], an attention-based graph con⁃
volutional network (GCN) was proposed to convert unstruc⁃
tured pathological reports into structured data for computer 
analysis, improving pathologists’ workflow and providing 
more accurate assistance for diagnosis and treatment, with 
promising results demonstrated on a dataset from TCGA. Se⁃
mantic communication technology can also be used for intelli⁃
gent diagnosis, which can use a large amount of case data to 
carry out intelligent diagnosis according to the patient’s 
medical history and examination results, thus providing doc⁃
tors with more accurate diagnosis results[58–59]. The work in 
Ref. [58] proposed a general healthcare representation model 
that uses simple convolution operations and up/down sam⁃
pling to adaptively extract distinct individual key features, 
achieving superior performance and model complexity com⁃
pared to other baseline models on the MIMIC-III dataset. In 
addition, semantic communication technology can be used for 
intelligent treatment, which can provide more effective treat⁃
ment plans according to the patient’s medical history and ex⁃
amination results, thus more effectively treating pa⁃
tients[60–61]. Two drug recommendation studies[60–61] proposed 
a drug combination prediction model that leverages multi-
faceted drug knowledge and loss functions to improve drug en⁃
coding and drug-drug interaction (DDI) control, achieving su⁃
perior accuracy, effectiveness and safety compared to state-of-
the-art methods. Moreover, doctors can better understand the 
condition of patients and provide more effective treatment 
plans for them by using semantic communication technology 
to query relevant cases according to the patient’s medical his⁃
tory and examination results. Semantic communication tech⁃
nology can also be used for intelligent drug development, 
which can use a large amount of drug data to find new drugs 
according to the patient’s medical history and examination re⁃
sults, thus more effectively treating patients[62–63]. The work 
in Ref. [64] proposed a framework that combines pathological 
images and medical reports to generate a personalized diagno⁃
sis result for an individual patient, using nuclei-level image 
feature similarity and content-based deep learning methods to 
extract structured prognostic information and assign impor⁃
tance to different factors, with promising results demonstrated 
on TCGA data for renal cell carcinoma. In conclusion, the ap⁃
plication of semantic communication technology in the medi⁃
cal field can improve medical efficiency and help treat pa⁃
tients better, providing more effective treatment plans for pa⁃
tients and making medical care more intelligent.
2.4 Medical Image Analysis

Semantic communication is a critical component in medical 
image analysis, where accurate interpretation and communica⁃
tion of medical image findings are crucial for clinical diagno⁃
sis and decision-making. In medical image analysis, semantic 
communication involves the ability to convey the meaning of 
medical image features and findings, such as the presence of 

tumors, lesions, or abnormalities, to clinical experts and other 
stakeholders. Semantic communication is especially important 
in cases where medical images need to be interpreted by mul⁃
tiple experts or in cross-institutional settings, where the inter⁃
pretation of medical images may vary due to differences in ex⁃
pertise or experience[62]. Therefore, the development of seman⁃
tic communication methods and tools for medical image analy⁃
sis has become an active research area in recent years. Deep 
learning-based semantic segmentation and classification algo⁃
rithms have shown great potential in enabling accurate and ef⁃
ficient semantic communication in medical image analysis. By 
leveraging the power of deep learning, these algorithms can 
automatically extract and classify medical image features, and 
provide intuitive visual representations of the underlying medi⁃
cal conditions. These approaches have the potential to greatly 
improve the efficiency and accuracy of medical image analysis 
and interpretation, and ultimately enhance patient care and 
outcomes. Based on the different granularity of semantic fea⁃
ture extraction, medical image analysis can be divided into 
classification, detection, and segmentation. Classification in⁃
volves assigning a label or category to an image or region of in⁃
terest based on its characteristics, which is used in tasks such 
as tumor diagnosis and tissue classification[65]. The work in 
Ref. [66] proposed an instance-based vision transformer to 
learn robust representations of histopathological images for 
the pRCC subtyping task by extracting finer features from in⁃
stance patches and capturing both cellular and cell-layer level 
patterns by position-embedding, grade-embedding, and self-
attention. The work in Ref. [67] proposed a hierarchical Multi-
Instance Learning (MIL) framework with an Information Bottle⁃
neck (IB) to handle patient-level labels and exploit the correla⁃
tion among leukemia subtypes for better accuracy and general⁃
ization in childhood acute leukemia classification without the 
need for cell-level annotations. Detection involves identifying 
the presence or location of specific features or anomalies in an 
image, which is used in tasks such as lesion detection and lo⁃
calization. The work in Ref. [68] proposed a semi-supervised 
multi-task learning framework for whole slide image classifica⁃
tion to improve the performance on both cancer region detec⁃
tion and subtyping tasks by capturing the interaction of the 
two tasks, and to preserve the sequential relationship of the 
tasks using a weight control mechanism, demonstrated to be 
effective in accuracy and generalization on four large datasets 
with different cancer types. Segmentation is the process of di⁃
viding an image into multiple regions or segments based on 
their characteristics, which is used to identify and isolate spe⁃
cific structures or features in medical images. The work in 
Ref. [69] proposed a contrastive learning framework with 
multi-granularity views for tissue segmentation by designing 
three contrastive learning tasks from global to local, which can 
capture fine-grained patterns in the learned representations 
for transfer learning to various tissue segmentation tasks in 
histopathological images, demonstrated to be superior to exist⁃
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ing contrastive learning methods. The work in Ref. [70] pro⁃
posed a Composite High-Resolution Network for nuclei grad⁃
ing, i.e., a special task of nuclei segmentation and classifica⁃
tion, which includes a W-Net for segmentation, two high-
resolution feature extractors for nuclei classification, and a 
head-fusion block for label generation.
2.5 Autonomous Driving

The field of autonomous driving has gained significant at⁃
tention due to the continuous development of artificial intelli⁃
gence technology. Semantic communication technology has 
emerged as a crucial factor in this field.

To enable natural dialogue between passengers and autono⁃
mous or driverless cars, these vehicles must possess the abil⁃
ity to comprehend natural language. This necessitates the use 
of semantic analysis technology, which can identify the actual 
intention and emotional tendencies of language, leading to bet⁃
ter passenger satisfaction. Furthermore, autonomous and driv⁃
erless cars must be capable of perceiving their surrounding en⁃
vironment, identifying various traffic signs, and adhering to 
driving rules on the road. This requires significant support 
from semantic modeling and computer vision technology to en⁃
sure that the vehicles respond appropriately to traffic signals, 
pedestrians, and other vehicles. In case of an emergency, 
voice alarms can assist drivers and passengers in reacting 
quickly. Voice alarms can warn passengers of problems and al⁃
low for further operations based on their responses. All in all, 
semantic communication technology plays an indispensable 
role in the development of autonomous driving and driverless 
cars. It enhances the ability of these vehicles to understand 
passenger needs, perceives the surrounding environment accu⁃
rately, and provides timely alarms to passengers in emergen⁃
cies. These factors provide the foundation for the future devel⁃
opment of intelligent transportation.
3 Development Trends

The progress and extensive application of artificial intelli⁃
gence technology have significantly supported the research and 
implementation of semantic communication applications. Intel⁃
ligent voice interaction is projected to become the standard for 
AI-driven semantic communication applications, with voice 
technology continuously advancing and proliferating. Addition⁃
ally, multi-modal interaction will become more prevalent as 
multi-modal technology is applied to different media, offering 
more diverse interactions. Personalized interaction will be pri⁃
oritized by analyzing user preferences and needs. Further, se⁃
mantic understanding and generation technologies, along with 
knowledge graphs, will continue to advance, making human-
computer interaction more natural and intelligent. While seman⁃
tic communication applications will bring more convenience 
and efficiency to daily life, work, and learning, they are also an⁃
ticipated to encounter new challenges, such as security and se⁃
mantic ambiguity. In conclusion, the continuous development 

and expansion of semantic communication applications will pro⁃
vide both opportunities and challenges for society.
4 Challenges

Semantic communication applications powered by artificial 
intelligence encounter several challenges that require resolu⁃
tion. Firstly, there is a lack of profound semantic comprehen⁃
sion, making it difficult for the application to fully understand 
the user’s expression, which may result in potential misinter⁃
pretation. Secondly, the application’s self-learning ability is 
limited, which restricts its capacity to increase knowledge 
from user input. Thirdly, the application’s computational com⁃
plexity and memory capacity limitations may negatively affect 
its processing capabilities. Lastly, the application’s weak anti-
interference ability makes it vulnerable to external interfer⁃
ence and noise.

To address these challenges, the application must have a 
more accurate and profound understanding of the user’s se⁃
mantic expression and the ability to learn from user input. It 
must also enhance its computational complexity and memory 
capacity to process more information in less time and have a 
stronger anti-interference ability.

Several approaches have been developed to tackle these 
challenges, including NLP techniques to enhance semantic 
comprehension, deep learning models such as convolutional 
neural networks (CNNs) for self-learning, distributed comput⁃
ing and cloud computing to increase computational complexity 
and memory capacity, and noise cancellation and signal pro⁃
cessing to improve anti-interference ability.

In conclusion, addressing these challenges will enhance the 
application’s ability to provide a better user experience, bring⁃
ing convenience and value to various aspects of life. The diffi⁃
culties encountered by semantic communication applications 
driven by artificial intelligence can be addressed through vari⁃
ous approaches, including NLP, deep learning, distributed 
computing, cloud computing, noise cancellation, and signal 
processing
5 Conclusions

This paper provides a review of semantic communication 
applications powered by AI, examining its background, tech⁃
nology, applications, and development trends. Semantic com⁃
munication applications have become an essential direction 
for the development of AI technology, with widespread appli⁃
cations and significant impact. They enhance human-
computer interaction efficiency and quality, improve user ex⁃
perience, and address issues such as language barriers and in⁃
formation overload, bringing convenience and value to all as⁃
pects of life. As technology advances, semantic communica⁃
tion applications will become increasingly intelligent, natural, 
personalized, and multimodal, promoting AI technology devel⁃
opment in broader fields. However, challenges such as user 
privacy protection and semantic ambiguity require continuous 
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innovation and improvement to ensure healthy application de⁃
velopment. In conclusion, semantic communication applica⁃
tions will be extensively adopted in various fields, bringing 
convenience and transforming people’s lives and work in the 
near future.
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Abstract: With the rapid development of networks, users are increasingly seeking richer and high-quality content experience, and there is an 
urgent need to develop efficient content caching strategies to improve the content distribution efficiency of caching. Therefore, it will be an ef⁃
fective solution to combine content popularity prediction based on machine learning (ML) and content caching to enable the network to pre⁃
dict and analyze popular content. However, the data sets which contain users’ private data cause the risk of privacy leakage. In this paper, to 
address this challenge, we propose a privacy-preserving algorithm based on federated learning (FL) and long short-term memory (LSTM), 
which is referred to as FL-LSTM, to predict content popularity. Simulation results demonstrate that the performance of the proposed algorithm 
is close to the centralized LSTM and better than other benchmark algorithms in terms of privacy protection. Meanwhile, the caching policy in 
this paper raises about 14.3% of the content hit rate.
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1 Introduction

Due to the explosive development of smart devices in 
networks, data traffic has increased unprecedentedly 
in recent years. With the limited communication re⁃
sources, backhaul link congestion will occur in the 

peak period at times, which leads to poor quality of experience 
(QoE)[1]. Content caching is considered to be a promising solu⁃
tion to improving the QoE of users. For a traditional approach, 
almost all contents are placed on the cloud server. However, 
since a large number of popular files are easy to be repeatedly 
requested by users, the popular files can be cached in ad⁃
vance at local base stations (BSs), which not only guarantees 
the hit rate of content, but also is helpful to reduce the users 􀆳 
waiting time, alleviates the pressure on the core network and 

relieves traffic congestion[2–4].
In the past, traditional content-caching strategies, such as 

Least Recently Used (LRU)[5] and Least Frequently Used (LFU)[6], 
were used in the deployment phase. However, different users 
have different content preferences and these preferences are of⁃
ten time-varying, so the fixed content deployment cannot take 
full advantage of the network caching. Therefore, in order to fur⁃
ther improve the performance of network caching, using ma⁃
chine learning (ML) to accurately predict popular files in the fu⁃
ture attracts the interest of researchers during the deployment 
of caching content files[7]. WON and KIM[8] proposed a prefer⁃
ence prediction neural network model based on DeepFM to pre⁃
dict the user 􀆳s preference for movies, which improved the pre⁃
diction accuracy by considering the interaction of low-order and 
high-order features of the input data. LI et al.[9] proposed proac⁃
tive edge caching for device-to-device (D2D) assisted wireless 
networks. In this paper, the authors adopt bidirectional long  
short-term memory (LSTM) networks, graph convolutional net⁃
works and attention mechanisms to learn user preferences. 
JIANG et al.[10] proposed LSTM to predict the users’ content re⁃
quest distribution, thereby achieving higher accuracy and better 

This work is supported in part by the National Natural Science Founda⁃
tion of China (NSFC) under Grant No. 62001387, in part by the Young Elite 
Scientists Sponsorship Program by the China Association for Science 
and Technology (CAST) under Grant No. 2022QNRC001, and in part by 
Shanghai Academy of Spaceflight Technology (SAST) under Grant No. 
SAST2022052.

18



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

YAN Yuna, LIU Ying, NI Tao, LIN Wensheng, LI Lixin 

Content Popularity Prediction via Federated Learning in Cache-Enabled Wireless Networks   Special Topic

versatility.
The above methods can be classified as centralized ML, 

where the original training data sets need to be uploaded to 
the central server. However, the prediction of content popular⁃
ity often involves personal information (e. g., home addresses, 
shopping, etc.) as training samples, which results in the risk of 
privacy leakage. As a privacy-preserving distributed learning 
framework, federated learning (FL) was proposed to tackle this 
challenge by training a global statistical model without access⁃
ing users’ private raw data[11–12]. Recently, FL has been put 
forward to solve the challenging problems in wireless net⁃
works[13–14]. In particular, an FL-based approach was provided 
by FAROOQ et al. [15] to build a flood forecasting model. Spe⁃
cifically, the local training parameters are aggregated to build 
the global model. By transferring the training parameters in⁃
stead of sending huge data sets, the leakage of the data pri⁃
vacy will be greatly decreased. WANG et al.[16] proposed an ef⁃
ficient content popularity prediction of privacy-preserving 
(CPPPP) scheme based on federated learning and Wasserstein 
generative adversarial network (WGAN), which achieves a 
high cache hit ratio. In this system, the server aggregated the 
users 􀆳 updates using federated averaging, and each user per⁃
formed training on its local data using WGAN, which could 
achieve high cache efficiency and protect the privacy of users. 
Therefore, considering privacy protection, FL can also be ap⁃
plied to the content popularity prediction in cache-enabled 
wireless networks.

Motivated by the above discussions, we propose a privacy-
preserving algorithm for content popularity prediction named 
FL-LSTM, which combines LSTM with FL. Due to the unique 
design structure, LSTM is suitable for processing and predict⁃
ing time series, such as content popularity prediction[10]. Ac⁃
cording to the aggregation mechanism of FL[11], the global con⁃
tent popularity prediction model will be built based on local 
training parameters. Thus, the FL-LSTM algorithm can inher⁃
ently improve security performance and obtain reliable predic⁃
tion performance.

The main contributions of this work are summarized as follows:
• We investigate a content popularity prediction problem in 

cache-enabled wireless networks, and aim at minimizing the 
mean-square error (MSE) and maximizing the cache hit rate. 
Considering the significance of privacy-preserving, a novel 
content popularity prediction algorithm FL-LSTM based on 
LSTM and FL is proposed. The algorithm avoids the direct 
transmissions of raw user data, which preserves user privacy.

• By utilizing a real-world dataset, the simulation results 
demonstrate that the proposed algorithm achieves similar per⁃
formance to the centralized LSTM and better prediction ability 
than other state-of-the-art schemes.

The remainder of this paper is organized as follows. In Sec⁃
tion 2, the communication system model and problem formula⁃
tion are introduced. The privacy-preserving FL-LSTM algo⁃
rithm is proposed in Section 3. In Section 4, the simulation re⁃

sults and experiment result analysis are shown. Finally, con⁃
clusions are drawn in Section 5.
2 System Model and Problem Formulation

2.1 System Model
In this paper, we consider a cache-enabled wireless net⁃

work as illustrated in Fig. 1, which consists of a cloud server, 
multiple BSs and the users served by each associated BS. 
There are B BSs in this specific region and the set of BSs is de⁃
noted by B = {1, 2…, b,…, B }. The content library is denoted 
by F = {1, 2…, f,…, F }, where we assume the requested files 
have the same size. The cloud server O contains the whole 
content library and each BS can only store a limited number of 
files. To simplify the model, we assume that each BS is 
equipped with a cache Cm of an equal size, where Cm = n rep⁃
resents BS b can only cache n files from the cloud server.

It is assumed that the contents are requested and fetched 
during the discrete time periods and the set of time periods is 
expressed as T = {1, 2…, t,…, T }. In each time slot t: 1) Ac⁃
cording to users’ previous request information, the local BSs 
and the cloud server jointly build the content popularity pre⁃
diction model; 2) based on the prediction results, the related 
BS will cache the relevant contents from O in advance; 3) 
when the requested file is stored in the local BS, the associ⁃
ated users will directly obtain the requested contents; 4) other⁃
wise, the requested file is fetched from the cloud server.
2.2 Problem Formulation

Based on the network discussed above, the basic frame⁃
work and operation process of the communication system are 
introduced. It is obviously known that content popularity pre⁃
diction is perceived as the key to the success of the system. 
For a specific file f , the popularity will change over time, 
and its popularity sequence is expressed as Pb, f =
{p1

b, f, p2
b, f,…, pt

b, f},  pt
b, f ∈ [ 0,1 ]. Therefore, the popularity pre⁃

▲Figure 1. Scenario of a cache-enabled wireless network
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diction of a file is transformed into a time series prediction 
problem, and the real and predicted values are expressed as 
pt

b, f and p͂t
b, f, respectively. Moreover, the MSE is adopted to 

evaluate the accuracy of the prediction as follows:
MSE = 1

T ∑
t = 1

T

| p͂ t
b, f - pt

b, f |
2
. (1)

In this paper, content popularity is defined as the ratio of 
the number of requests for a file to the number of requests for 
all files within a time slot. If a file is frequently requested by 
users, the higher popularity of the content is, the more likely it 
is to be accessed again in the next time slot. In time slot t, the 
content popularity of a file f can be expressed as qf

b, t =
req t, f ∑

i = 1

f req t, f ,where req t, f represents the number of user re⁃
quests for the file f in a time slot t. Therefore, the popularity of 
the content library is denoted as Pb, t =
{p1

b, t, p2
b, t,⋯, pf

b, t},  pf
b, t ∈ [ 0,1 ] and ∑

f = 1

F

pf
b, t = 1, where the or⁃

der of files is in a descending order according to the popularity.
Due to the limited storage capacity of each BS b, after the 

prediction task is completed, each BS b needs to sort the pre⁃
dicted popular files, select the contents that are more popular 
with users to cache in advance and replace the files with low 
popularity. If the contents are cached locally, this operation 
does not need to be repeated. For a certain discrete time slot t, 
the selected pre-cached files in local BS bare formulated as 
Ab, c = {a1

b, c, a2
b, c,⋯, af

b, c}, where af
b, c = 1 if the file f is cached 

in BS b, otherwise af
b, c = 0 and ∑

f = 1

F

af
b, c ≤ n.

Furthermore, when we measure the cache-enabled wireless 
network, the cache hit rate is considered as an important met⁃
ric of caching performance. The hit rate of each BS during 
each time slot is defined as hb = 1

n ∑
f = 1

F

af
b, c × pf

b, t, referring to 
the probability that the precached file is popular content, 
which is used to represent the effectiveness of the content 
cache. Therefore, the hit rate of the network is averaged to be 
the total hit rate h̄ during each training episode.

Due to the limited information collected by a single BS, 
combining several local BSs by the cloud server is necessary 
to obtain the whole popularity of the content library. However, 
it will also cause a privacy leakage issue to some extent. Last 
but not least, the objective of this paper is to predict the con⁃
tent popularity accurately and maximize the cache hit rate dur⁃
ing each time slot while preserving users’ privacy.
3 FL-LSTM for Content Popularity Prediction

3.1 Literature Overview
1) LSTM: LSTM was first proposed by HOCHREITER et al.[17]. 

Although the recurrent neural network (RNN) can be used to 
process and predict the sequence data, the processing and pre⁃
diction effect of LSTM is better than that of the RNN as the 
time scale of the processing sequence increases, and the phe⁃
nomena of “gradient vanishing” and “gradient explosion” of 
the RNN can be avoided through LSTM. Therefore, LSTM is 
selected as the benchmark algorithm to predict popular files. 
The illustration of the LSTM algorithm is shown in Fig. 2. A 
common LSTM unit is composed of a cell, an input gate, an 
output gate and a forget gate, where the “gate” structure is an 
approach to data control. The formulas of the three gate struc⁃
tures are defined as follows. The forget gate f t decides what 
kind of previous information will be forgotten, i.e.,
f t = σ (W fx ⋅ x t + W fh ⋅ h t - 1 + b f ), (2)

where x t is the input vector of the current time and h t - 1 is the 
hidden status of the previous time. W fx, W fh and b f are the in⁃
put weight, recurrent weight and corresponding bias of the for⁃
get gate f t, respectively. The input gate i t is used to select 
which information will be recorded, i.e.,
i t = σ (W ix ⋅ x t + W ih ⋅ h t - 1 + b i), (3)

where W ix, W ih and b i are the input weight, recurrent weight 
and corresponding bias of the input gate i t, respectively. x t and h t - 1 are weighted to update the value of the input gate 
through the sigmoid function σ ( ⋅ ). The candidate memory 
cell state C͂ t is updated by Eq. (4), i.e.,
C͂ t = tanh (Wcx ⋅ x t + Wch ⋅ h t - 1 + bc), (4)

where Wcx, Wch and bc are the input weight, recurrent weight 
and corresponding bias of the candidate memory cell, respec⁃
tively. And the tanh function tanh ( )⋅  can control the range of 
its value to [-1, 1 ]. The new memory cell C t controls the input 
and forget mechanism, which updates the state of the unit at 

▲Figure 2. Illustration of long short-term memory (LSTM) algorithm
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the previous time based on the output of the forget gate and 
the input gate, i.e.,
C t = f t⊙C t - 1 + i t⊙C͂ t, (5)

The output gate o t decides what value should be output by 
Eqs. (4)–(7), and then the output of the hidden layer h t is ob⁃
tained by Eq. (7), i.e.,
o t = σ (Wox ⋅ x t + Woh ⋅ h t - 1 + bo ) , (6)

h t = o t⊙ tanh (C t ) , (7)
where Wox, Woh and bo are the input weight, recurrent weight 
and corresponding bias of the output gate o t, respectively.

2) Fedavg: The Fedavg algorithm was proposed by KHAI et 
al.[18] and has several advantages in privacy protection and dis⁃
tributed training. In addition, users do not need to upload all 
the data, but only upload the local parameters needed by the 
model, which greatly reduces the overall communication over⁃
head. In this algorithm, the cloud server starts FL training by 
sharing global model parameters with the base station. Then, 
each base station selects samples from the local data subset to 
perform the stochastic gradient descent (SGD) in order to up⁃
date the local model and share the updated model weight with 
the cloud server. After that, the cloud server aggregates all the 
updated local model weight parameters and averages them to 
generate the global model. Compared with the centralized ma⁃
chine learning, the algorithm has some differences. The algo⁃
rithm flow is presented as follows:

(a) At the beginning of training, the global model param⁃
eters W o in the cloud server are initialized and then sent to the 
local BSs as W b

t .
(b) The BS b trains the local dataset and updates W b

t  to W b
t + 1 after the training epochs, i.e., W b

t + 1 ← LocalUpdate (b, wb
t ).

(c) The cloud server aggregates each BS’s W b
t + 1 and then 

generates a new global model W o
t + 1. This formula of aggrega⁃

tion can be described as:
W o

t + 1 = 1
B ∑

b = 1

B

W b
t + 1. (8)

(d) Afterwards, the W o
t + 1 will be broadcasted to all the BSs 

and the next round of training is started.
3.2 Proposed FL-LSTM Algorithm

Based on the aforementioned LSTM and Fedavg algorithms, 
we develop the FL-LSTM algorithm. The algorithm can predict 
the content popularity accurately while preserving the users’ 
privacy. The illustration of the FL-LSTM algorithm is shown 
in Fig. 3. Then we will introduce the details of this algorithm.

Firstly, the initial LSTM network is adopted on the cloud server 
as the global model, and each BS will build the local LSTM net⁃

work with the initial parameters W o from the global model.
After that, to avoid sharing the raw data directly, the pre⁃

dicted model based on LSTM will be trained locally. The raw 
data D are divided uniformly and posted on each BS, with db representing the local dataset of BS b. The previous k mo⁃
ments are selected for prediction and the network can be char⁃
acterized as follows: the input time series X = { x1, x2,⋯, xt } are defined as the historical popularity, through the vector X 
to predict the output vector Y. The output time series Y =
{ y1, y2,⋯, yt } are defined as the predicted popularity, and 
H = { h1, h2,⋯, ht } means the information of the hidden layer.

The local weight parameters are collectively referred to as 
W b

t . The small BS adopts the SGD optimizer, and the weight 
parameters will be updated to W b

t + 1 according to Eqs. (2)–(7).
According to the aggregation mechanism in Eq. (8), the 

cloud server aggregates the updated parameters W b
t + 1 which 

are uploaded by all local BSs to generate a new global model. 
Subsequently, the parameters of the global model W o

t + 1 are 
downloaded to each BS and then the next round of training 
will be started. Model training and parameter updating are re⁃
peated until the algorithm is terminated when the maximum 
number of iterations T is reached. The objective of this algo⁃
rithm is to minimize the MSE denoted in Eq. (1). Specifically, 
the proposed FL-LSTM algorithm is summarized in Algo⁃
rithm 1.
Algorithm 1. Content popularity prediction based on FL-LSTM
1: Initialize the system: cloud server O, local BSs B.
2: Initialize the LSTM network by Eqs. (2)– (7): X,  Y and H; 

the global weight W o; the local weight W b and the local 
sampled batch size k.

3: Initialize the round index t and the local training epoch in⁃
dex n.

▲Figure 3. Illustration of FL-LSTM algorithm
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4: for round=1,…, t ,…, T do
5:   At time-step t, the global model W o

t  is broadcasted to each  
  BS as W b

t .
6:   (For each BS b, start the local training.)
7:   for epoch=1,…, n,…, nmax do
8:      Samples a batch { xi, y͂i }k

i = 1  from db;9:      Update the local LSTM network by the loss functions in 
Eq. (1):
10:    W b

n + 1 ← SGD (∇ω
1
k ∑i = 1

κ ( yi - y͂i )2 )
11:  end for
12:  The cloud server aggregates each BS’s W b

t + 1 and updates  
W o

t  to W o
t + 1 by Eq. (8).

13:   t ← t + 1.
14: end for

4 Simulations and Discussions

4.1 Datasets
The MovieLens 1M Dataset[19] is used to evaluate the perfor⁃

mance of the proposed FL-LSTM algorithm in this paper. The 
dataset contains 1 000 209 ratings of approximately 3 900 
movies made by 6 040 users. Each sample in the data set in⁃
cludes a user ID, movie ID, user rating, and time stamp when 
commenting. We assume that the number of ratings by users 
can reflect the popularity of relevant movies. The process of 
dataset construction is as follows: Based on this assumption, 
we choose the ten movies with the most ratings as the predic⁃
tion objects and divide one hundred discrete time slots based 
on the provided time stamp. Next, we count the number of rat⁃
ings by users according to each time slot and consider it as the 
number of requests. Then, the request times are normalized to 
calculate the content popularity of the corresponding movie 
file. Finally, according to the content popularity of each film 
in one hundred discrete time slots, the LSTM model is used to 
predict the content popularity of each film in the next moment. 
By ranking the results, we can predict which movies will be 
popular at the next moment.
4.2 Simulation Setup

The real MovieLens 1M Dataset was used to construct the 
content popularity prediction datasets. The top 10 rated mov⁃
ies are selected as the forecast object with their trends for 100 
days. In the time series prediction problem, we set k = 10, 
which means that we use the previous 10 time-slots data to 
predict the popularity of the next moment. In addition, the 
number of BSs is set as B = 5 and the dataset is divided uni⁃
formly and handed out to each BS.
4.3 Performance Comparison

In Fig. 4, the performance of different algorithms is com⁃
pared under the task of predicting the content popularity for 
100 days. The LSTM algorithm and the Autoregressive Inte⁃

grated Moving Average Model (ARIMA) algorithm[20] are se⁃
lected as the benchmark algorithms. As shown in Fig. 4, the 
LSTM and FL-LSTM algorithms have similar prediction results, 
and their accuracy is significantly better than the ARIMA algo⁃
rithm. The ARIMA algorithm depends on the statistical charac⁃
teristics of the data and the performance is limited by param⁃
eter estimation, so it is difficult to achieve high accuracy. In 
contrast, the LSTM and the FL-LSTM algorithms have the same 
core prediction network, which reflects obviously the superior⁃
ity of performance for the time series prediction problem.

Fig. 5 indicates the convergence of the MSE loss with the 

▲Figure 4. Content popularity prediction by different algorithms

ARIMA: Autoregressive Integrated Moving Average Model FL: federated learning LSTM: long short-term memory

▲Figure 5. MSE loss of LSTM and FL-LSTM algorithms
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LSTM algorithm and the FL-LSTM algorithm, where the 
MSE loss is related to the accuracy of the prediction. In the 
case of setting the same simulation parameters, both of these 
algorithms can complete the convergence within the range of 
400 – 500 training rounds. At the same time, the value of 
MSE is very small, and both can be below 0.000 2, which 
proves the superiority of the prediction performance. In addi⁃
tion, in the same simulation environment, the convergence of 
the FL-LSTM is slightly slower than the LSTM algorithm and 
the loss is similar, i.e., only 4.2% between the two algorithms. 
The main reasons why the federated learning scheme is 
slightly inferior to the centralized one are as follows: 1) The 
user data distribution of each BS is different, which also leads 
to a certain delay in updating the global model during the dis⁃
tributed FL-LSTM training; 2) when weight aggregation is car⁃
ried out in federated learning, fractional parts of weight pa⁃
rameters are generally truncated to improve uploading effi⁃
ciency. Therefore, there will be a certain degree of numerical 
precision loss in the process of average weighted sum. For the 
sake of privacy protection, it is acceptable to sacrifice a little 
bit of performance.

Fig. 6 shows how the total hit rate changes as the memory 
capacity of the BSs increases. Cache capacity is defined as the 
ratio of the number of files cached to the total number of files 
in a file set. There is a significant upward trend when increas⁃
ing the memory capacity. The reason is that the users’ re⁃
quested contents are more likely to be accurately predicted 
and cached in the base station. However, for the LRU and the 
random caching (RC), although it takes into account historical 
popularity information, the content popularity will not be pre⁃

dicted in advance, which will suffer more inaccurate caching 
and cause a lower hit rate by at least a 14.3% difference. The 
optimal performance is obtained under the real content popu⁃
larity, which is an ideal situation. In addition, compared with 
traditional cache algorithms, although the FL-LSTM algorithm 
proposed in this paper requires additional resources for model 
prediction, the time required to execute model prediction is 
relatively small. From Fig. 6, it can also be observed that 
when the memory capacity increases, the hit rate of the FL-
LSTM algorithm will gradually approach the optimal value, 
which is only a 2.3% performance loss at 70% capacity. 
Therefore, this shows the superiority of the algorithm proposed 
in this paper.
5 Conclusions

In this paper, we investigate the content popularity predic⁃
tion problem in cache-enabled wireless networks. Meanwhile, 
a novel prediction algorithm FL-LSTM based on LSTM and FL 
is proposed for privacy preservation. The proposed algorithm 
can not only predict the content popularity accurately but also 
protect the users’ privacy information. Moreover, the perfor⁃
mance of the FL-LSTM is validated on the real-world dataset 
compared to other algorithms. Simulation results demonstrate 
that the performance of the proposed algorithm just declined 
slightly, only 4.2% compared with the centralized LSTM and 
is better than other state-of-the-art schemes while the privacy 
can be well preserved.
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1 Introduction

With the continuous integration and ad⁃
vancement of communications and the 
popularization and application of artifi⁃
cial intelligence (AI), the next-generation 

communication system will not only facilitate huge 
data rates but also enable the intelligent industry of 
the Internet of Things (IoT) [1]. The number of con⁃
nected devices worldwide is estimated to reach 29.3 
billion[2] by 2023. The entire IoT network will provide 
low-latency, high-precision, scalable and flexible ser⁃
vices powered by AI and non-contact sensing tech⁃
niques[3]. In conventional wireless networks, high-
quality environmental data are gathered by sensing 
and then conveyed via data transmission links, which 
is finally computed in downstream tasks. These sepa⁃
rate processes pose challenges to meeting the strin⁃
gent requirements of ultra-low latency, high reliabil⁃
ity, and high capacity in 6G networks.

An integrated network can realize closed-loop infor⁃
mation flow and wide-area intelligent cooperation 
(Fig. 1). It profoundly integrates wireless sensing func⁃ ▲Figure 1. Application scenarios of integrated communication, sensing and computation

ISAC: integrated sensing and communication
Local model training

Local model trainingSensordata

Sensing
ISAC signal

Computation
Communication
Artificial intelligence

Integrated remoteradio unit

Integrated macro site

Integrated smart base stationDigital twin
Wearable devices

Augmented reality and virtual reality

Intelligent traffic system

Cloud-awareCloud-processCloud-cache

Global average model

Global average

25



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

ZHAO Moke, HUANG Yansong, LI Xuan 

Special Topic   Federated Learning for 6G: A Survey From Perspective of Integrated Sensing, Communication and Computation

tions, including but not limited to traditional positioning, detec⁃
tion, imaging, and wireless transmission. It also leverages widely 
distributed computing power to process additional computations, 
thus realizing the cross-fusion of perceptual communication 
computing and supporting typical application scenarios such as 
the smart city, intelligent healthcare, and smart home in 6G sys⁃
tems. To enhance the ability of 6G networks to perform endog⁃
enous intellectual sensing and adapt computational power, both 
academia and industry have preliminarily explored integrated 
sensing, communication and computation (ISCC) frameworks. 
On the other hand, the cloud computing platform is utilized for 
centralized data processing and training by machine learning 
(ML). Nonetheless, the vast volume of data created by intelligent 
terminals at the network edge may require substantial communi⁃
cation resources. When computation workloads are distributed 
for multiple tasks and all data are uploaded to a cloud platform, 
secure data privacy becomes difficult. Therefore, sending all 
data to the cloud for computing and learning may be impractical.

In recent years, China and the European Union have respec⁃
tively introduced relevant regulations such as the Data Security 
Law and the General Data Protection Regulations[4], which 
states the regulatory requirements to ensure privacy and secu⁃
rity while sharing data. For AI technology, federated learning 
(FL) was proposed for the sake of low latency and high accu⁃
racy[5]. Edge computing pushed cloud services from the network 
core to the edge closer to IoT devices[6]. Communication trans⁃
mission delays can be efficiently decreased by intelligently 
combining terminal equipment, edge server and cloud center to 
participate in model training and data processing at the edge. 
Specifically, FL refers to edge intelligent sensing devices that 
use their computing capabilities to learn local data and obtain 
models based on different tasks. FL is a widely used distributed 
learning model, which uses wireless networks to bring a global 
ML model that improves computing ability and keeps data con⁃
fidential to a certain extent[7].

In a typical FL training process, the central server broadcasts 
the global model to each edge device available. The edge de⁃
vice learns from the local data and obtains a local model. 
The regional model parameters are uploaded to the cen⁃
tral server for aggregation to generate a new global 
model. This process is repeated iteratively to obtain the 
final global model. The federation has four leading per⁃
formance indicators: latency, energy, reliability, and 
large-scale connectivity[8]. Because there is no need to 
share and transmit raw data and a cluster-like communi⁃
cation structure is adopted, FL is more suitable for large-
scale intelligent devices and widely distributed deploy⁃
ment environments. In this paper, we will examine the is⁃
sues faced by FL and the latest advancements in FL to 
investigate the future 6G network of universal comput⁃
ing. We will present the challenges in three categories: 
addressing terminal/data heterogeneity and model vari⁃
ances, executing FL within the constraints of universal 

computing resources, and bolstering privacy protection. By in⁃
troducing the fundamental concepts of FL, summarizing the ad⁃
vantages and disadvantages of existing research, and investigat⁃
ing application schemes for different task scenarios, this paper 
discusses the research trend of FL in the future edge intelli⁃
gence system. Section 2 demonstrates the basic framework of 
FL. In Section 3, we present techniques used for ISCC. In Sec⁃
tion 4, we highlight several challenges when implementing FL 
in the ISCC framework, including participant selection, adap⁃
tive aggregation, incentive mechanism, model compression, and 
privacy protection. Furthermore, we review the solutions to 
these problems along with their advantages and disadvantages. 
Finally, we design guidelines for the incorporation of FL and 
ISCC as well as a range of typical FL applications in Section 5.
2 Framework of Federated Learning

In traditional ML systems, users are required to upload local 
data to cloud servers with solid computing power for centralized 
model training, which includes central servers and several edge 
devices for data collection, as shown in Fig. 2. This scenario 
generates energy consumption and communication delays dur⁃
ing the data upload process. Additionally, there is also a risk of 
privacy disclosure for privacy-sensitive participating nodes. In 
response to this problem, researchers have conducted the re⁃
search on distributed ML. In 2017, Google first proposed FL 
technology[7]. Since then, FL has received significant attention 
from the academic community.

In a typical training cycle of FL, the dedicated edge server 
initially broadcasts a global machine-learning model to partici⁃
pating edge devices. Subsequently, the edge devices utilize 
their local data to calculate their respective model updates and 
transfer them to the edge server for further aggregation and 
global model updates. The FL training process is carried out it⁃
eratively in multiple communication rounds. The dataset of N 
edge devices is { D1, D2, D3,⋯, DN }. The traditional method is 
to upload the dataset and train the model in the central server, 
whereas FL coordinates the local training of many data users 

Server

▲Figure 2. Basic schematic diagram of federated learning (FL)
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through the network to update the parameters interactively with 
the global model on the server side. It cooperatively optimizes 
the common objective function to obtain the final ML model. 
For client k with dataset Dk, the loss function can be expressed 
as Fk ( ω ) = 1

Dk
∑j ∈ Dk

fj ( ω ). fj ( xj, yj, ω ) is the loss function of 
the j-th data sample related to a specific ML model, where 
( xj, yj ) represents the sensing data sample, while ω is the pa⁃
rameter of the learning model. In each learning round t, the 
steps detailed below are performed.

• Sensing data collection: each edge device k is equipped 
with sensing capabilities and collects data samples for local 
model training.

• Global model broadcast: each edge device k downloads the 
global model parameter ω( t ) through wireless communication 
links from the central server.

• Local model training: each edge device k uses the global 
model ω ( t )

k  to update its local model, where ω ( t )
k  is the local 

model parameter set of client k in the round of t. Therefore, 
ω ( t )

k = ω( t - 1) - η∇gk ( ω( t - 1) ), where η indicates the learning 
rate. As long as the local gradient gk ( ω( t - 1) ) is obtained, ω ( t )

k  
can be calculated.

• Local model uploading: ω ( t )
k  is sent to the server via the up⁃

link wireless channel by using the communication mode of the 
client device.

• Model parameter aggregating: the local models received by 
the server from all devices are aggregated to obtain a new global 
ML model, that is, ω( t + 1) = 1

K∑k ∈ K
ω ( t )

k .
By leveraging the FL framework, the initial dataset 

is stored locally and trained on edge devices. This 
eliminates the need for sharing data with other de⁃
vices or servers and further ensures that only global 
models are achieved via the transmission of model 
parameters. This advantage may address the limita⁃
tions of traditional ML methods. As shown in Fig. 3[9], 
FL achieves the construction of unified data among 
multiple nodes, providing higher quality services for 
big data applications by increasing data sample size, 
data types, data features, and data dimensions, and 
creating value for the future development of society. 
In comparison to traditional methods that gather data 
and train models based on cloud platforms, FL may 
be better equipped to handle dispersed computing 
tasks, while simultaneously preserving the privacy of 
user data. Additionally, FL may help alleviate the ex⁃
ponential increase in cost that arises from an in⁃
creased data volume. It is also believed to be more 
user-friendly for larger mobile terminal scales and to 
provide advantages for a wider distributed deploy⁃
ment environment. By enabling the sharing and fu⁃
sion of heterogeneous device data, FL may provide 
powerful support for future 6G environments.

3 Integrated Sensing, Communication and 
Computation
In traditional wireless networks, sensing, communication and 

computation are designed separately for various purposes. The 
isolated design principle is difficult to adapt to the strict re⁃
quirements of emerging 6G applications, such as autopilot and 
virtual reality, which demand ultra-low latency, ultra-high reli⁃
ability, and high capacity. Therefore, a new paradigm has 
emerged, which integrates communication and computation and 
comprehensively considers the application of data in down⁃
stream in a task-oriented way. As shown in Fig. 4, sensing, com⁃
putation, and communication are highly coupled with FL in this 
new paradigm. Because of the fact that radio signals can be uti⁃
lized for wireless communications and environmental sensing si⁃
multaneously, intelligent devices can analyze information about 
the detected target via wireless sensors in terms of range, posi⁃
tioning, imaging, etc. LIU et al. proposed a resource allocation 
approach toward ambient intelligence[10]. LI et al. introduced 
ISCC into over-the-air computation (AirComp) to improve spec⁃
trum efficiency and sensing performance, where function calcu⁃
lation from different user data is implemented by utilizing the 
overlay feature in wireless signal transmission in the air[11]. 
However, there is still a paucity of studies on the FL under the 
umbrella of ISCC in wireless networks.
3.1 Integrated Sensing and Communication

Integrated sensing and communication (ISAC) refers to the 
integration of sensing and communication into the unified de⁃

▲Figure 3. Comparison of traditional machine learning (ML) and federated learning (FL)[9]
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sign of wireless networks to improve spectral efficiency and 
achieve mutual benefit through sensor-assisted communications 
and communication-assisted sensing. Compared to traditional 
wireless networks, ISAC can use wireless infrastructure, spec⁃
trum and power resources for simultaneous communication and 
sensing, which is believed to improve system performance at a 
lower cost. Meanwhile, the primary challenge in ISAC is the 
tradeoffs between performance caused by the sharing wireless 
resources and the contradiction between sensing and communi⁃
cation. These tradeoffs include information theory limitations, 
physical performance, propagation channel, and cross-layer in⁃
dicators[12]. There are three perception tasks: detection, estima⁃
tion and recognition, which are all performed based on the col⁃
lected signal or data information related to the sensing object.

The integration gain can be obtained through the develop⁃
ment of a dual-function waveform that can sense and communi⁃
cate simultaneously based on shared resources. The leading 
methods to attain this include scheduling orthogonal or non-
overlapping wireless resources (time division/frequency divi⁃
sion/space division/code division), using separate signal wave⁃
forms, and balancing communication and sensing performance 
for signal waveform sharing[12]. For example, LIU et al. [13] pro⁃
posed a privacy protection vertical FL scheme based on distrib⁃
uted ISAC for cooperative object/human motion recognition. 
The method uses a dedicated frequency-modulated continuous 
wave signal for each edge device 􀆳s target sensing and data ex⁃
change. It then converts the sensing data into a low-
dimensional intermediate vector and transmits it to the edge de⁃
vice. LI et al presented two new FL algorithms that use com⁃
pression sensing to reduce the communication burden in an IoT 
system[14]. JEON et al. proposed a compression sensing method 
for FL on large-scale multi-input multi-output communication 
systems, which is superior to the traditional linear beamforming 
method[15]. It can also reduce the performance gap between FL 
and centralized learning through reconstruction. Based on the 
above, orthogonal or non-overlapping wireless resources may 
help to reduce functional interference, but there will be re⁃
source competition between sensing and communication. And 
effective management of waveform interference is necessary to 
separate waveforms at the same frequency. These methods can 
improve the efficiency of the system’s spectral, hardware, and 
information processing efficiency, but they come with higher 
computational complexity.
3.2 Integrated Communication and Computation

As data volumes from edge devices rapidly increase, it be⁃
comes challenging for edge servers to receive large amounts of 
data from edge devices quickly through wireless links due to 
limited wireless communication resources. This issue may be 
addressed through asynchronous communication and computa⁃
tion resource management and AirComp. AirComp is used to in⁃
tegrate computation into communication, which improves com⁃
munication and computation efficiency, protects user privacy, 

enhances user experience, and reduces delays caused by mul⁃
tiple access according to Ref. [16]. Compared with AirComp, 
communication and computing are in order in asynchronous 
communication and computation resource management. Opti⁃
mizing resource management for asynchronous communication 
and computation can minimize energy consumption and delay 
to a certain extent, but scheduling complexity must be reduced. 
Compared with asynchronous communication and computation 
resource management, AirComp needs to consider the interfer⁃
ence between AirComp and conventional communication appli⁃
cations, expand the scale of equipment, and conduct extensive 
performance evaluation under actual settings.
3.2.1 Asynchronous Computation and Communication

The ability of edge devices to update and upload the model 
status information to the edge server largely depends on their 
wireless channel qualities. When the edge devices operate un⁃
der poor wireless channel conditions, it leads to longer model 
update time, which may delay the follow-up training. During 
model training, it is necessary to allocate wireless resources 
properly to improve learning performance, so that limited wire⁃
less resources can be fully utilized by collaborative asynchro⁃
nous computation and communication resource management.

Various optimization algorithms can be employed to solve 
the problem of energy-delay allocation, or communication and 
computation performance can be adjusted to reduce energy 
consumption. On the one hand, it can be achieved by increas⁃
ing bandwidth utilization. To further reduce the communication 
delay, ZHU et al. [17] roposed a broadband analog aggregation 
access scheme, which exploits the waveform superposition 
characteristics of the multi-access channel to achieve inte⁃
grated communication and computation. The communication 
delay is independent of the number of edge devices connected 
to the access channel. On the other hand, it can also speed up 
the learning process to solve the problem of communication 
and resource constraints. For example, it can maximize the FL 
algorithm convergence rate under the conditions of power and 
energy[18–19]. However, most scenarios are characterized by co⁃
existing sensing, communication and computation. Resource 
competition between communication and sensing also affects 
the performance of FL.
3.2.2 AirComp

Existing research mainly applies AirComp to different sce⁃
narios, or uses various optimization methods to minimize the 
signal mean square error[20–22] and also optimizes the model in 
FL by different means based on AirComp.

AMIRI et al. introduced error accumulation and how to spar⁃
sify gradient estimates based on AirComp. They proposed sav⁃
ing untransmitted gradient vectors in an error accumulation vec⁃
tor, updating the local model, and computing a new gradient 
vector based on this error accumulation vector in the next itera⁃
tion[23]. CAO et al. proposed a “one-time” aggregation to im⁃
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prove communication efficiency while considering a new power 
control design to maximize the convergence rate[24]. The results 
show that the proposed power control strategy achieves a signifi⁃
cantly faster convergence rate in FL than the fixed power con⁃
trol benchmark strategy. Since the error accumulation vector 
and gradient thinning correct the gradient computation process 
and make more efficient use of the bandwidth, this scheme im⁃
proves the accuracy of the model based on AirComp. YANG et 
al. proposed a general integrated communication and computa⁃
tion scheme based on AirComp[25]. However, the experiment re⁃
vealed that the model􀆳s accuracy would gradually decline due to 
the parameter aggregation mistake in AirComp caused by signal 
distortion.
4 Challenges in Federated Learning and 

Their Solutions
FL may partially solve the problem of limited computing and 

communication resources while preserving client privacy to a 
certain extent. Despite this, such technology still faces issues 
such as data heterogeneity, insufficient training accuracy, and 
low training efficiency. Various schemes are proposed to re⁃
solve these issues, as summarized in Table 1.
4.1 Participant Selection

Intelligent edge devices have limited computing capacity, 
making centralized data processing challenging. Thus, it is cru⁃
cial to choose edge devices based on data heterogeneity and lo⁃
cal models. However, present methods, like the time fairness 
scheme and throughput fairness scheme[26], may overlook the 
differences between learning tasks, leading to poor learning per⁃
formance. Furthermore, due to the unique characteristics of 
edge intelligence, model updating requires wireless channel re⁃
sources. Therefore, selecting the correct participants for each 
FL training round is vital[27].

4.1.1 Selection Based on Participants and Training Quality
Terminal equipment exhibits heterogeneity and non-

independent identically distributed characteristics, resulting in 
substantial differences between terminal equipment models[28]. 
It is crucial to carefully select high-quality participants, effi⁃
ciently train models, and ensure their robustness. To achieve 
this, different strategies are proposed. One strategy involves se⁃
lecting high-quality participants. For example, LAI et al. pro⁃
posed a client selection framework, which enables the identifi⁃
cation and selection of valuable clients for training[29]. In an⁃
other study, MONDAL et al. presented a distributed participant 
selection algorithm that minimizes the costs of energy consump⁃
tion and data transmission while selecting the least number of 
participants with the same coverage[30]. ZHANG et al. utilized 
the FL framework to train lightweight neural networks that es⁃
tablish the relationship between context and sensor data qual⁃
ity[31]. Their approach leverages participants’ context informa⁃
tion to predict sensing data quality.

The other strategy is that participants’ selection can be 
based on the quality of their local models. KATHAROPOULOS 
et al. proposed a power-of-choice strategy commonly used in 
the queue system[32]. According to their analysis, selecting the 
loss value as an important metric for the client can improve the 
convergence rate of the entire model. SATTLER et al. devised 
the clustered FL algorithm which divides the client into two par⁃
titions using their cosine similarity and checks partition consis⁃
tency by testing the gradient norm of the client[33].
4.1.2 Selection Based on Improving Resource Management

Due to the large number of participants, the upload link may 
become congested, and differing participants could result in un⁃
productive training rounds[34]. Selecting the best user cluster 
that aligns with limited communication and computational re⁃
sources will ultimately help improve training efficiency, reduce 
training time, and enhance model accuracy. RIBERO et al. sug⁃

▼Table 1. Challenges in federated learning (FL) and their state-of-the-art solutions
Challenge

Participant 
selection

Adaptive 
aggregation

Incentive 
mechanism

Model com⁃
pression

Privacy pro⁃
tection

Specific Method

Participating clients are selected based on the heterogeneous nature of 
the data, quality of participants and training, and resource constraints.

The best tradeoff is found between local updates and global parameter 
aggregation under a given resource budget to speed up the local train⁃

ing process.
FL requires an effective incentive mechanism for participation and bal⁃
ances rewards and limited communication and computing resources to 

improve data quality.
The transmission model is compressed to improve the communication effi⁃
ciency between the server and client. Knowledge distillation exchanges 

model outputs, allowing edge devices to adopt larger local models.

Privacy protection may be achieved through the inference of attacks, 
the encryption of data and models, and the improvement of privacy pro⁃

tection performance by blockchain technology.

Advantages and Disadvantages

Selecting participants can make full use of resources and is conducive to continuous training. 
However, when the data scale is too large, the overall performance cannot be guaranteed in the 

scenario of edge intelligence applications, and the training process needs to be optimized.
By adapting the frequency of global aggregation, the performance of the model can be improved, 

and the utilization of available resources can be improved. However, the convergence of adap⁃
tive aggregation schemes currently only considers convex loss functions.

By quantifying data quality, the overall benefit of FL is generally improved, but due to the het⁃
erogeneity of the environment, the excitation obtained by different edge devices in FL does not 

match, making it difficult to balance game rewards and resource consumption.
Client-to-server parameter compression may cause convergence problems, increase computa⁃

tional complexity, and reduce training accuracy. Knowledge distillation alleviates the problem 
of independent and identical distribution of data to a certain extent, but the quality of wireless 

channel will affect the accuracy of model training.
FL may solve the privacy leakage problems caused by the model parameter sharing and multi-
party communication and cooperation mechanism of FL. However, further research is needed 
when it comes to the security problems caused by data poisoning and the removal of traces left 

by participants’ data in the local model, etc.
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gested that only transmitting client updates with a significant 
amount of information during each training round reduces the 
transmission pressure of FL[35]. This approach decreases com⁃
munication costs during the training process while ensuring 
model accuracy by selecting the clients participating in each 
update. ABDULRAHMAN et al. proposed a multi-criteria par⁃
ticipant selection algorithm that considers participants’ central 
processing unit, memory, energy and task completion time for 
FL in IoT’s resource-constrained environment[36]. This algo⁃
rithm maximizes the number of participants while minimizing 
the number of communication rounds. To ensure long-term per⁃
formance, XU et al. explored FL in typical wireless networks, 
identifying issues related to participant selection and band⁃
width allocation in long-term client energy constraints. They 
proposed an online optimization algorithm based on Lyapunov 
to address these issues[37].
4.2 Adaptive Aggregation

In FL, the model updating procedure is primarily split into 
two steps: local model updating at clients and global aggrega⁃
tion, which involves uploading model parameters to the server 
and aggregating them into a global model. The adaptive aggre⁃
gation problem of FL specifically aims at bandwidth aggrega⁃
tion and model parameter aggregation[38]. With limited re⁃
sources, local model updating and global aggregation are modi⁃
fied to accelerate convergence and improve accuracy.

GUHA et al. suggested a single-round communication federa⁃
tion learning system to reduce the communications between cli⁃
ents and servers[37]. The entire training is carried out on the 
edge device, and only the local model parameters are uploaded 
and aggregated after the movement. Based on the greedy algo⁃
rithm, HADDADPOUR et al. proposed a hypercluster algorithm 
that trained each local model several times using the client’s 
local data and selected the model with the minimum training 
loss[39]. WANG et al. proposed a control algorithm to achieve 
the ideal tradeoff between the local update and the global aggre⁃
gation[40]. Analyzing the convergence boundary of distributed 
gradient descent of FL, it minimizes the training loss under a 
given resource budget. ZHANG et al. proposed an FL frame⁃
work with adaptive local aggregation, which captured the per⁃
sonalized data required by the client in the global model, down⁃
loaded the global model and local model for the adaptive aggre⁃
gation, and initialized the local model on each client before 
trained in each iteration[41].

In the same training iterations, adaptive aggregation FL 
reaches better performance than the synchronous aggregation of 
all clients. With effective utilization of computation and commu⁃
nication resources, it obtains lower training loss and higher 
model accuracy and reduces the load of edge servers.
4.3 Incentive Mechanism

The incentive mechanism quantifies the quality of data that 
edge devices provide to reduce energy consumption and im⁃

prove model accuracy with the guarantee of data privacy and 
the lowest possible computation and communication costs[42]. 
The incentive mechanism for FL participants usually regards 
the edge device as the seller and provides them with training 
services while the server is regarded as the buyer of the data.

To improve the energy efficiency of model transmission, 
FENG et al. proposed a cooperative relay network-assisted pa⁃
rameter transmission scheme and corresponding service pricing 
mechanism[43], modeling the relationship between edge devices 
and FL servers as a Stackelberg game model[44]. SUN et al. in⁃
vestigated the air-ground dynamic digital twinning and joint 
learning and, on this basis, studied the FL incentive mechanism 
based on the Stackelberg game and proposed an adaptive ad⁃
justment incentive mechanism for the best user and customer 
selection in dynamic networks[45]. To ensure that the incentive 
budget is proportional to the value of the FL model and prevent 
the server from being forced to pay redundant rewards, 
RICHARDSON et al. proposed an incentive scheme based on 
influence to prevent the participants from receiving rewards 
due to redundant data[46]. Optimizing the FL incentive mecha⁃
nism can effectively limit the number of the participants who 
falsely contribute to the work, reduce their motivation to pho⁃
nily report expenses, and thus improve the overall performance 
of FL.
4.4 Model Compression

While the number of mobile devices rises sharply, it is chal⁃
lenging for mobile virtual network operators to provide low-cost 
and reliable access services for users due to deficient network 
infrastructure. The amount of uploaded data is also gradually 
growing in tandem with the widespread use of powerful ML on 
edge devices, resulting in significant bandwidth consumption 
and a decline in communication efficiency. Therefore, reducing 
the communication overhead in FL becomes an impending is⁃
sue, which can be addressed by data compression, knowledge 
distillation, asynchronous parameter update, etc.[47].
4.4.1 Compressed Data Transmission

Compressing the transmission data is an effective measure to 
improve transmission efficiency. In the FL framework, model 
parameter compression technologies, such as network pruning, 
quantization and weight sharing, can be applied to reduce com⁃
munication costs. Based on the uploaded information on gradi⁃
ent changes in the FL process, the model output value or inter⁃
mediate value can also be compressed by gradient compression 
in different levels[48].

However, during data compression, noise is inevitable and 
will cause a discrepancy between the convergence result and 
the ideal solution, negatively impacting the effectiveness of FL. 
ROTHCHILD et al. proposed to reduce the number of commu⁃
nication rounds in FL by directly retrieving the latest gradient 
value without updating its position in the vector[49].
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4.4.2 Knowledge Distillation
Knowledge distillation (KD) can transfer knowledge from one 

neural network to another by exchanging soft predictions rather 
than the whole model[47]. KD loss includes mild loss and local 
training loss. KD is employed to mine the global model knowl⁃
edge[50]. In addition, LI et al. proposed the federated model dis⁃
tillation algorithm to train heterogeneous models in a way that 
protects privacy[51]. LIN et al. adopted integrated distillation to 
migrate the knowledge of all heterogeneous client models to the 
global model in each global iteration[52]. However, these algo⁃
rithms ignore the further personalized needs of clients partici⁃
pating in training. ZHANG et al. proposed the knowledge trans⁃
fer personalized FL algorithm, which parameterizes the similar⁃
ity of paired clients and uses KD to transfer the personalized 
soft prediction knowledge to the local[53]. CHO et al. used clus⁃
ter co-distillation to migrate the understanding of clients with 
similar data distribution to the local model[54]. DIVI et al. used 
KD to solve the problem of FL data heterogeneity and proposed 
the personalized FL algorithm, which was carried out in two 
stages[55]. The first stage simplies FL. In the second stage, each 
user selects the best teacher model from the global model of 
each iteration and distills it to achieve personalization.
4.5 Privacy Protection

FL is a method that is believed to effectively solve the prob⁃
lem of user privacy disclosure, since it does not require edge de⁃
vices to upload their data. The user equipment builds a network 
model, generates local model parameters based on local data, 
and uploads them to the central server, which aggregates local 
model parameters to the global model, effectively protecting 
user privacy and easing the burden of communication band⁃
width. The gradient should be protected because even if the 
training data stay inside the local area, attackers can still ex⁃
ploit these shared gradients to reverse the content of the origi⁃
nal training data[56], exposing the training data to the public. At 
the same time, malicious participants or collaborators can use 
the intermediate information transmitted during the FL training 
process to launch member inference attacks[57] or data recon⁃
struction attacks[58], exposing participants in FL to privacy dis⁃
closure threats. Fig. 5 shows potential privacy attacks in the 
processes of FL.

By encrypting gradient parameters, it is possible to solve the 
privacy disclosure issue that might arise during the process of 
uploading and downloading model parameters. At the same 

time, some researchers have focused on improving encryption 
efficiency[59]. FL can consistently use the blockchain consensus 
mechanism to establish authentic interaction in an untrusted en⁃
vironment. The benefit generated from the blockchain reward 
mechanism can also encourage knowledge sharing in FL. The 
combination of blockchain technology and FL can improve data 
privacy and achieve performance isolation[60].
5 Applications and Prospects

FL is currently in use globally. For example, HART et al. 
used the federated averaging algorithm to predict the next word 
of the mobile phone keyboard input method[61]. MUHAMMAD 
et al. applied FL to the recommendation system[62]. Applying FL 
to predict the flow of urban global cellular networks can aug⁃
ment the data sets and improve the prediction accuracy of the 
model, without the problems of complexity and no real-time. 
Based on the FL framework, the central node collects the model 
updates transmitted by the edge base station for aggregation, so 
as to obtain a global model with good performance. The algo⁃
rithm collects the data of vehicles and their tasks as input and 
allocates the multi-dimensional resources according to the out⁃
put results of the model to meet the time-varied resource re⁃
quirements and efficiently accomplish the computation tasks in 
the Internet of Vehicles system. Network function virtualization 
technology can transform traditional network hardware re⁃
sources into virtual network resources. The two-way gated loop 
unit based on the distributed FL framework can predict virtual 
network function resource requirements.

Depending on its low latency and large data processing ca⁃
pacity, FL can also be used in the 6G era, which blends commu⁃
nication, sensing and computation together. For instance, due to 
various influences in the air[63], large-scale unmanned aerial ve⁃
hicles (UAV) swarm to avoid collisions and quickly reach the 
destination. FL based on the wireless network can design the 
flight route of a UAV swarm well and better solve UAV persis⁃
tent online decision-making problems by collecting sensing 
data from the surrounding environment[64], supporting UAV-
assisted mobile edge computing with ultra-reliable and low-
delay communication[65].

Despite the advancements of FL, it can be improved in sev⁃
eral aspects, which are shown as follows.

• Various intelligent devices, including mobile phones, cam⁃
eras, UAVs, depth sensors and radio sensors, produce data 
samples in various modalities and have a wide range of compu⁃
tational capacities. Researchers should put more resources to 
deal with the multimodal adaptive problem in FL based on 
ISCC.

• The applications of FL combine sensing, communication 
and computation together. In other words, ISCC can better con⁃
duct FL in the future. However, the resource management prob⁃
lems among these three aspects still need to be solved, and the 
hardware devices that integrate such three functions still need 
to be developed.▲Figure 5. Possible privacy attacks on federated learning (FL)

Local data Local modeltraining

Modelaggregation

Global modeldistribution

Modelaggregation

Eavesdropping inference
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• With the development of FL, privacy attacks against FL are 
also expanding. It is still necessary to improve encryption effi⁃
ciency based on existing encryption algorithms and continue to 
explore the combination of blockchain and FL to form a new 
edge computing paradigm with higher security.

• The number of IoT devices is increasing, while the data 
generated by the equipment are also expanding rapidly. In the 
face of scenarios that include various IoT devices[66], the FL 
frameworks need to couple with the access of intelligent edge 
devices with different task attributes. Therefore, it still requires 
constant exploration of practical coupling design for them and 
efficiency improvement of FL while ensuring the accuracy of 
the model.
6 Conclusions

This paper summarizes the development of FL and classifies 
related technologies according to the challenges that FL faces. 
Among these technologies, ISCC is the most significant one for 
its high coupling with FL. Besides, this paper introduces the re⁃
search on device, data and model heterogeneity in FL and dem⁃
onstrates different challenges and the existing work about FL, 
including participant selection, adaptive aggregation, incentive 
mechanism and game model, model compression, and privacy 
protection. In the end, the applications and prospects of FL in 
reality are presented.
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1 Introduction

Wireless communication has witnessed rapid devel⁃
opment, especially in terms of higher data rates, 
considerably smarter devices, and diverse applica⁃
tions. Moreover, compared with the 4G technol⁃

ogy, 5G uses high-frequency bands, which makes the nodes 
denser. To achieve optimal performance in the radio access 
network (RAN) and meet the demand of increasing mobile 
subscribers, millions of base stations (BSs) are constructed. 
The number of BSs in developing regions has increased by 
over 2 million from 2007 to 2015, and data transmission rates  
have increased tenfold every five years[1]. However, the ex⁃
pected surge in traffic load requires 5G New Radio to enable 
denser network deployment and network densification, which 
results in higher energy consumption. Most of the energy is 
consumed by BSs in the typical RAN. However, with the de⁃
ployment of more base stations with massive multiple-input 
multiple-output (MIMO), energy efficiency in NR becomes 
more urgent and challenging.

One of the energy-saving schemes that have received exten⁃
sive attention from academia and the industry is cell activa⁃
tion/deactivation based on load prediction[2–3]. In the third 
Generation Partnership Project (3GPP), energy-saving stan⁃
dard cases have been specified in Releases 15 and 16, such 
as the intra-radio access technology (RAT) case with the cen⁃

tral unit-distributed unit (CU-DU) split, the intra-system inter-
RAT case, and multiple radio access technology-dual connec⁃
tivity (MR-DC) [4]. An approach has also been recently devel⁃
oped to optimize wireless communications and introduced into 
self-organizing networks (SON) to allow for smarter operation 
and maintenance of operators’ daily tasks[5]. The inclusion of 
AI-based tools enables a more proactive approach to exploit⁃
ing the vast number of data available and incorporating addi⁃
tional dimensions, such as end-user experience and behavior 
characterization[6–8]. The cell providing capacity booster can 
be switched off autonomously according to its cell traffic load 
status. Ref. [9] leverages AI/ML methods to predict load and 
achieve energy efficiency performance through dynamic 
threshold configuration.

In this paper, we introduce and provide related works on AI/
ML based energy efficiency, simulation and evaluation in real 
environments, and future vision on AI/ML based wireless net⁃
works. The main contributions of this work can be summarized 
as follows:

1） The benefits of AI/ML enabled wireless networks and 
the deployment of RAN intelligence are provided.

2） Compared with no-energy saving schemes and tradi⁃
tional energy saving strategies, the proposed AI/ML based en⁃
ergy saving scheme achieves great performance on power con⁃
sumption and energy efficiency.
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3） Based on further consideration of future wireless commu⁃
nication networks, we propose to integrate AI into every as⁃
pect of wireless communication systems to depict a vision of 
the intrinsic AI through intelligent data perception, intelligent 
modeling, distributed architecture, and intelligent monitoring.

The rest of this paper is organized as follows. Section 2 in⁃
troduces AI/ML assisted wireless networks and describes their 
benefits. The definition of typical energy-saving features and 
the AI/ML based energy efficiency strategy is provided in Sec⁃
tion 3, followed by the simulation and results in Section 4. Fu⁃
ture vision on AI/ML based wireless communication networks 
is provided in Section 5. Section 6 shows the conclusions.
2 Machine Learning Assisted Wireless Net⁃

works
As an important research direction of AI technologies, ma⁃

chine learning takes advantage of the depth of the neural net⁃
work’s non-linear processing capability, which successfully 
solves a series of previously intractable problems. In image 
recognition, speech processing, and natural language process⁃
ing, AI shows greater performance than humans and has better 
ability than traditional algorithms[10]. It therefore has been suc⁃
cessfully applied in a variety of technologies, services and ap⁃
plications, including telecommunications. Many optimization 
issues in the wireless network, such as network energy saving, 
mobility optimization, and load balancing, can be resolved 
through powerful tool-machine learning, analyzing the data 
pattern and historical information to predict the trends or gen⁃
erate optimization decisions. Fig. 1 illustrates the functional 
framework for RAN intelligence[11].

1) Data collection is the function that provides input data to 
model training and model inference functions. Training data 
represent the data needed as input for the AI/ML model train⁃
ing function, while inference data are those needed as input 
for the AI/ML model inference function.

2) Model training is the function that performs the AI/ML 
model training, validation, and testing, which may generate 
model performance metrics as part of the model testing proce⁃
dure. The model training function is also responsible for data 
preparation (e. g., data pre-processing and cleaning, format⁃

ting, and transformation).
3) Model inference is the function that provides AI/ML 

model inference output (e. g., predictions or decisions). The 
model inference function may provide model performance 
feedback to the model training function when applicable. The 
model inference function is also responsible for data prepara⁃
tion (e. g., data pre-processing and cleaning, formatting, and 
transforming). The inference output of the AI/ML model is pro⁃
duced by the model inference function.

4) Actor is the function that receives the output from the 
model inference function and triggers or performs correspond⁃
ing actions. The actor may trigger actions directed to other en⁃
tities or at itself.

5) Model deployment/update is used to initially deploy a 
trained, validated, and tested AI/ML model to the model infer⁃
ence function or to deliver an updated model to the model in⁃
ference function.

6) Model performance feedback is used for monitoring the 
performance of the AI/ML model. After model inference is 
executed, the model performance is generated and returned 
to the model training function to evaluate whether the model 
performance is good or not. If the performance is not good, 
the model training function can trigger model retraining and 
reselection.

7) Feedback is the information needed to derive training 
data and inference data, or to monitor the performance of the 
AI/ML model and its impact on the network through updating 
key performance indicators (KPIs) and performance counters.

The 5G network and even future networks require the intro⁃
duction of AI/ML to achieve automated and intelligent opera⁃
tions. For network energy saving, ML algorithms may predict 
the energy efficiency and load state of the next period, which 
can be used to make better decisions on cell activation/deacti⁃
vation for energy saving. Based on the predicted load, the sys⁃
tem may dynamically configure the energy-saving strategy. 
For mobility optimization, many radio resource management 
(RRM) actions related to mobility (e.g., selecting handover tar⁃
get cells) can benefit from the predicted user equipment (UE) 
location/trajectory. For load balancing, based on a collection 
of various measurements and feedback from UE, network 
nodes, historical data, etc., AI/ML model-based solutions and 
predicted load could improve load balancing performance, in 
order to provide a higher quality user experience and to im⁃
prove the system capacity.
3 Strategies for Energy Efficiency

3.1 Energy Efficiency Features
Typical energy efficiency strategies used for wireless net⁃

works include symbol shutdown, channel shutdown, carrier 
shutdown and deep sleep, which can be categorized into a sym⁃
bol level, a physical channel level, and a machine level. Follow⁃
ing are the definitions of each energy efficiency strategy.▲ Figure 1. Framework of artificial intelligence/machine learning (AI/

ML) enabled wireless networks

Training data Model training

Data
collection

Model inference
Inference data Output

Actor

Model deployment/update
Model performancefeedback

Feedback
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1) Symbol shutdown: A base station detects that some down-
link symbols have no data to send, and thus it turns off the PA 
and other analogue components, thereby reducing the power 
consumption of the base station, which basically has no effect 
on the user’s latency. Moreover, by adjusting the number of 
synchronization signal block (SSB) beams when cells have no 
traffic or light traffic in a specified period of time, the propor⁃
tions of symbols for which symbol power saving can take effect 
can be increased.

2) Channel shutdown: It refers to the technology of multi-
channel base stations such as 64/32 channels by muting some 
RF channels of the base station with low traffic, thereby reduc⁃
ing the power consumption of the base station. But for services 
with higher throughput requirements, when the user channel 
environment deteriorates, it is necessary to consider that the 
coverage cannot be reduced.

3) Carrier shutdown: When the service volume of the entire 
BS is low during off-peak hours at night , the BS energy con⁃
sumption can be reduced by retaining only the coverage-layer 
cells and shutting down the capacity-layer cells. If the service 
load is lower than a specified threshold, the capacity layers 
are dynamically shut down. When the load of the carrier pro⁃
viding basic coverage is higher than a specified threshold, the 
base station dynamically turns on the carriers that have been 
shut down for service provisioning.

4) Deep sleep: The power requirements of the radio base 
station vary with the cell traffic load. As the service load of the 
cell increases, the power amplifier gradually becomes the 
most energy-consuming component of the base station. Addi⁃
tionally, in the scenario of no traffic load, the power demand of 
the wireless base station mainly comes from the digital inter⁃
mediate frequency module. It is worth noting that in the ab⁃
sence of traffic load, and between control signaling transmis⁃
sions, the BS part consumes energy even when transmissions 
are not required. Thus, a strategy arises to reduce unnecessary 
radio BS energy consumption by gradually deactivating compo⁃
nents when they remain unused for transmission.

Energy efficiency strategies can be adopted based on the 
various wireless network environment, and different energy ef⁃
ficiency strategies produce different energy-saving results. In 
addition, AI/ML technologies can be used to help choose 
which energy-saving strategy for a certain scenario. In this pa⁃
per, the channel shutdown and symbol shutdown are mainly 
used in simulation and evaluation in Section 4.
3.2 AI/ML Assisted Energy Efficiency Strategy

Cell activation/deactivation is an energy saving 
scheme in the spatial domain that exploits traffic 
offloading in a layered structure to reduce the en⁃
ergy consumption of the whole RAN. When the ex⁃
pected traffic volume is lower than a fixed thresh⁃
old, the cells may be switched off, and the served 
UE may be offloaded to a new target cell. Efficient 

energy consumption can also be achieved by other means such 
as reduction of load, coverage modification, or other RAN con⁃
figuration adjustments. The optimal energy saving decision de⁃
pends on many factors including the load situation at different 
RAN nodes, RAN nodes capabilities, KPI/quality of service 
(QoS) requirements, number of active user devices, UE mobil⁃
ity, cell utilization, etc. AI/ML techniques could be utilized to 
optimize the energy saving decisions by leveraging the data 
collected in the RAN network. AI/ML algorithms may predict 
the energy efficiency and load state of the next period, which 
can be used to make better decisions on cell activation/deacti⁃
vation for energy saving. Based on the predicted load, the sys⁃
tem can dynamically configure the energy-saving strategy 
(such as  the switch-off timing and granularity and offloading 
actions) to keep a balance between system performance and 
energy efficiency and to reduce energy consumption.

Moreover, using statistics of past and current cell traffic 
and mobility management events, radio resource and mobil⁃
ity management strategies can be optimized to devise appro⁃
priate green strategies to minimize network energy consump⁃
tion, while avoiding the degradation of network performance 
in terms of coverage quality, user rate, and handover failures. 
Since both the load of the serving cell and those of the neigh⁃
boring ones play a role in the carrier shutdown procedure, op⁃
timized traffic distribution calls for centralized cell load pre⁃
dictions or exchange of predictions across cells. Only when 
the predicted load of the source and target cells is low, the 
source cell may be deactivated and the target cell is handed 
over to its UE to avoid QoS degradation. An optimized traffic 
distribution should also account for hard-to-predict traffic 
fluctuations and future cell loads as well as the change in sig⁃
nal quality of the UE in the neighborhood of a shutdown car⁃
rier, which in turn may also significantly affect cell loads in 
the area. A new target cell may be handed over to UE, but 
the load of this target cell may rapidly increase soon after, 
making the target cell fail to meet the required QoS, and re⁃
quire an immediate reactivation of the recently shutdown car⁃
rier, shown in Fig. 2.
4 Evaluation and Performance

The energy-saving strategy for the 5G system adopted in 
this paper comprises three components: all-day symbol shut⁃
down, all-day AI-based channel shutdown, and AI-based deep 
sleep from 0 a.m. to 6 a.m. The test area is located in the Pa⁃
nyu District of Guangzhou, China, and involves 54 active an⁃

▲Figure 2. Potential scenarios cause deterioration of energy efficiency

Source cell Target cell Source cell Target cell
Next time point

36



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

CHEN Jiajun, GAO Yin, LIU Zhuang, LI Dapeng 

Future Vision on Artificial Intelligence Assisted Green Energy Efficiency Network   Special Topic

tenna units (AAU). The energy-saving strategy is triggered by 
the predicted load threshold, as described in Section 3. Three- 
time ranges are set to compare the performance of no energy-
saving, traditional energy-saving, and AI/ML-based energy-
saving. T0 represents the time without energy-saving strate⁃
gies, T2 represents the time when the AI/ML technology is 
used, and T1 represents the time with traditional energy-
saving strategies. The simulation’s configuration is illustrated 
in Table 1.

Table 2 displays statistical information on the duration of 
energy-saving strategies using AI/ML techniques compared 
with traditional methods. The data indicates a significant in⁃
crease in the duration of deep sleep and channel shutdown, 
which has resulted in even greater energy savings. Specifi⁃
cally, the use of AI/ML techniques has extended the duration 
of shutdown for these strategies, resulting in a reduction of 
power consumption of 452.18 W and a 2.48% improvement in 
energy efficiency, compared with traditional methods. This in⁃
formation highlights the potential benefits of using AI/ML 
techniques for energy-saving purposes, particularly in extend⁃
ing the duration of energy-saving strategies, bringing signifi⁃
cant energy savings. Fig. 3 shows the average power supply  

and a 23.87% reduction in power consumption with the use of 
AI/ML techniques. Fig. 4 shows the energy efficiency improve⁃
ment of 23.40% achieved by using AI/ML techniques.

Overall, by utilizing AI/ML techniques to determine energy-
saving strategies, energy efficiency can be significantly im⁃
proved while simultaneously reducing energy consumption, 
leading to an increase in the energy-saving duration of base 
stations.
5 Future Vision on AI/ML Assisted Wire⁃

less Networks
The current 5G communication system is designed as a 

service-based architecture, providing a modular framework for 
meeting stringent latency and reliability requirements. Barely 
introducing AI technologies in wireless networks to solve a 
certain network optimization problem does not enable net⁃
works to be intelligent. Continuously changing radio environ⁃
ment requires retraining and updating the fixed ML models, 
resulting in repetitive work and hindering the intelligence of 
the wireless system. Future communication systems are not 
only considered to apply AI to enhance a certain function, 

▼Table 1. Configuration information of evaluation
Time

T0

T1

T2

Range
2022-06-09

~
2022-06-15
2022-05-27

~
2022-06-22
2022-06-25

~
2022-07-01

Type

None

Tradition

AI/ML 
assisted

Energy Saving Strategy
W/O channel shutdown
W/O symbol shutdown

W/O deep sleep
Channel shutdown
Symbol shutdown

Deep sleep
AI/ML channel shutdown
AI/ML symbol shutdown

Deep sleep
AI: artificial intelligence     ML: machine learning
▼Table 2. Time statistics of the duration of shutdown

Phase

T0-W/O 
ES

T1-Tradi⁃
tional ES
T2-AI/
ML ES

Deep 
Sleep/h

0

2.61

3.48

Channel 
Shutdown/h

0

0.58

5.94

Symbol
Shutdown/h

0

9.63

9.03

Power Con⁃
sumption/

W

593.97

466.92

452.18

Improve⁃ment(Compared with T0)

-

21.39%

23.87%

Improve⁃ment(Compared with T1)

-

2.48%

-

AI: artificial intelligence     ES: energy saving     ML: machine learning
▼Table 3. Time statistics of the duration of energy efficiency

Phase

T0-W/O ES
T1-Tranditional ES
T2-AI/ML ES

5G Energy Efficiency
/GB•(kW•h)−−1

2.78
2.97
3.44

Improvement
(Compared with T0)

-

6.55%
23.40%

AI: artificial intelligence     ES: energy saving     ML: machine learning

AI: artificial intelligence     ML: machine learning
▲Figure 3. Average power supply
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▲Figure 4. Energy efficiency improvement
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such as energy saving, mobility management, etc., but also de⁃
signed to integrate AI into every aspect of wireless communi⁃
cation systems to depict a vision of the intrinsic AI.

The key requirements of the 5G network are stringent la⁃
tency and reliability in user scenarios, e.g, ultra-reliable low-
latency communications (URLLC), enhanced mobile broad⁃
band (eMBB), and massive machine type of communication 
(mMTC), while future wireless networks (6G) seamlessly inte⁃
grates with AI, communication networks, and edge computing. 
To support AI function, 5G networks preset functional mod⁃
ules to monitor and enhance the performance of service-based 
architecture (SBA), but in the future wireless network, it in⁃
volves self-sensing, self-learning, self-decision and self-
evolution to support self-capability and realize AI/ML integra⁃
tion with communication networks. The transition in the AI/
ML structure from 5G networks to future wireless networks is 
shown in Fig. 5.

Therefore, to bring autonomous learning, autonomous 
decision-making, self-optimization, and self-evolution, AI-
native radio networks will be an intelligent loop including in⁃
telligent data perception, intelligent modeling, distributed ar⁃
chitecture, and intelligent monitoring.

1) Intelligent data perception
A large quantity of data transportation will bring burdens to 

the current interface. On the other hand, data sensed from the 
radio environment sometimes do not have the corresponding 
labels. Now with the generative adversarial networks (GANs), 
it will avoid transferring a large number of data between vari⁃
ous nodes in the network and protect the data privacy. GAN 
can generate the required data to simulate real data and im⁃
prove the performance of models to a certain extent.

2） Intelligent modeling
The implementation of machine learning usually requires a 

lot of manual intervention, such as data pre-processing, fea⁃
ture selection, model selection, hyper-parameter, and adjust⁃
ment. Each ML model or algorithm has a specific structure 

and usually comes with a set of strategies or rules for model 
construction. The purpose of intelligent modeling is to reduce 
manual intervention so that the radio network can automati⁃
cally generate and train the AI/ML model to achieve autono⁃
mous learning capabilities. Currently, auto-ML technologies 
can automatically select a machine learning model on given 
data and tasks, and automatically select an optimization algo⁃
rithm, so that the model has the characteristics of high perfor⁃
mance and low computational complexity of the task.

3） Distributed architecture
The centralized AI server collects the data of each network 

element and each node in the network, which will bring prob⁃
lems such as time delay and a large number of data transmis⁃
sion. The distributed AI server architecture can effectively 
solve this problem. The AI units are distributed on each net⁃
work node to jointly perform the calculation tasks of the same 
set of AI models. Distributed AI network architecture, where 
each network node can be used as a part of AI training/execu⁃
tion and a large number of related devices can jointly build a 
common model based on locally collected data sets, will be 
the trend of intelligent AI network architecture in the future. It 
will reduce data transmission load and data privacy leaks on 
the radio interface, improve model performance, and alleviate 
delay problems. Distributed AI will play an important role in 
the subsequent evolution of the network architecture.

4） Intelligent monitoring
Intelligent monitoring is the introduction of human control 

into the decision-making process of the network to improve 
the decision-making ability of AI algorithms and help the ma⁃
chine better understand user preferences and make more user-
preferred decisions. For example, when the AI model itself 
cannot make the correct decision or the cost of making the 
wrong decision is high, the AI algorithm can decide with hu⁃
man intelligence. With reinforcement learning, the agent ob⁃
tains reward through interaction with the environment or feed⁃
back from users, learns the characteristics of the external envi⁃

ronment, and improves decision-making 
strategies to adapt to the external envi⁃
ronment changes.
6 Conclusions

In this paper, we introduce the ben⁃
efits of AI/ML enabled wireless networks 
and provide the deployment of RAN in⁃
telligence. Compared with no energy sav⁃
ing schemes and traditional energy sav⁃
ing strategies, our proposed AI/ML based 
energy saving schemes achieve great per⁃
formance on power consumption and en⁃
ergy efficiency. Moreover, we put forward 
further consideration on future wireless 
communication networks, which inte⁃
grate AI into every aspect of wireless ▲Figure 5. Transition on AI/ML structure from 5G to future wireless network
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AI: artificial intelligence     ML: machine learning
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Distributed learning architecture Intelligent monitoring
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communication systems to depict a vision of the intrinsic AI 
through intelligent data perception, intelligent modeling, dis⁃
tributed architecture, and intelligent monitoring.
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Abstract: Emerging Internet of Things (IoT) applications require faster execution time and response time to achieve optimal performance. 
However, most IoT devices have limited or no computing capability to achieve such stringent application requirements. To this end, compu⁃
tation offloading in edge computing has been used for IoT systems to achieve the desired performance. Nevertheless, randomly offloading ap⁃
plications to any available edge without considering their resource demands, inter-application dependencies and edge resource availability 
may eventually result in execution delay and performance degradation. We introduce Edge-IoT, a machine learning-enabled orchestration 
framework in this paper, which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware 
offloading scheme for minimizing the average latency. We further propose a variant bin-packing optimization model that co-locates applica⁃
tions firmly on edge resources to fully utilize available resources. Extensive experiments show the effectiveness and resource efficiency of 
the proposed approach.
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1 Introduction

The Internet of Things (IoT) describes physical devices 
that are connected to the Internet or networks for the 
purpose of exchanging and sharing data. IoT enables 
direct fusion of physical devices into computer sys⁃

tems, resulting in efficiency, more reliable services and eco⁃
nomic benefits without human intervention. However, most 
IoT devices have limited or no computing capability to meet 
some application-specific requirements. For example, emerg⁃
ing IoT technologies such as the smart city[1], healthcare-IoT[2], 
Internet of Vehicles (IoV)[3–5], connected and autonomous ve⁃
hicles (CAVs) [6], and industry 4.0[7], require substantial re⁃
sources to execute their applications. In addition, most of 
these applications are structured as a collection of loosely-

coupled services that communicate with one another and are 
often latency-sensitive. A conventional approach is to offload 
these applications to a cloud computing (CC)[8] data center for 
execution. CC provides an on-demand availability of compute 
resources over multiple locations, each of which is a data cen⁃
ter. However, a CC data center could be hundreds or thou⁃
sands of miles away from the data sources, thereby jeopardiz⁃
ing the application performance through longer response time. 
A recent innovative distributed computing paradigm referred 
to as edge computing (EC) [9] brings computation and storage 
resources closer to the locations where they are needed, to re⁃
duce response time and save bandwidth. This enabling archi⁃
tecture deploys computation and storage resources at the edge 
of a network, and even beyond the edge of the network. It is 
important to note that EC computational resources are also 
limited compared to CC resources, but EC benefits IoT sys⁃
tems by deploying computing resources closer to end devices, 
thus reducing network traffic and latency to enable real-time 
insights. To this end, existing research works have exploited 
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EC for task offloading in various IoT systems[3–5, 10–11]. Never⁃
theless, one fundamental challenge is where and how to 
offload and schedule complex applications so that their aver⁃
age latency is minimized and high resource efficiency is 
achieved. A common practice is to randomly offload applica⁃
tions or tasks individually to available edges without jointly 
considering task resource demands, task dependencies and 
edge resource availability. Such a disjointed approach would 
result in execution delays due to insufficient resource avail⁃
ability or tasks unable to communicate with their dependent 
tasks. Hence, it is not suitable for latency-sensitive tasks.

For example, the video classification application shown in 
Fig. 1(a) consists of 12 sub-applications T1,⋯,T12, where T1, 
T2 and T3 are independent tasks, whereas T4 and T5 require in⁃
puts from T1 to be able to complete their executions. Similarly, 
T6, T7 and T8 depend on the completion of T4, T5 and T2, re⁃
spectively. These make the execution of complex IoT applica⁃
tions very challenging. It is naturally important to offload and 
schedule such applications, to minimize their average latency. 
For instance, suppose each sub-application or tasks 
T1,⋯,Tn of the application in Fig. 1(a) are randomly offloaded 
to different EC deployments, and then each dependent task 
would require the execution result(s) or input data from other 
task(s) to be transmitted back to its host edge deployment to 
complete its execution, as shown in Fig. 2(a). This transfer of 
input data is referred to as an input data flow, and such trans⁃
mission would incur additional delay, thereby further affecting 
the average latency, given the rate and number of transmis⁃
sions that could occur.

More specifically, assuming the video classification applica⁃
tion in Fig. 1(a) is to be executed, the work in Ref. [5] pro⁃
posed an approach as shown in Fig. 2(a), which offloads tasks 
T1, T2 and T3 to Edge 1, tasks T4, T5, T6 and T7 to Edge 2, and 
the remaining tasks T8, T9, T10, T11 and T12 to Edge 3. Since 
these tasks are interdependent tasks, the execution result of 
task T1 needs to be transmitted from Edge 1 to Edge 2, to 
serve as the input data to tasks T4 and T5, while the execution 
results of tasks T6 and T7 need to be transmitted from Edge 2 

to edge Edge 3, to serve as the input data to task T10. Finally, 
the execution results of tasks T2 and T3 need to be transmitted 
c1, m1  from Edge 1 to Edge 3 to complete the video classifica⁃

tion application execution.
In this paper, we show that machine learning (ML) tech⁃

niques enable effective IoT task offloading and scheduling in 
edge computing systems. We propose an ML linear regression 
model to predict or estimate the resource requirements and 

(a) Video classification application

T1

(b)　Video classification application, with each sub-application’s CPU and memory resource requirements denoted as c, m  and execution time denoted as Eex

▲Figure 1. Directed acyclic graphs (DAG) of representative application

(a) An approach for video classification application offloading

(b) Machine learning enabled approach for video classification applica⁃tion offloading
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▲Figure 2. Application offloading strategies
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execution time of an application, as shown in Fig. 1(b), and 
intelligently offload them to an edge with sufficient resource 
availability, as shown in Fig. 2(b). This approach eliminates 
the need of input data flow, as sub-applications can commu⁃
nicate and share data quickly. However, upon arrival of an 
application in a suitable edge, the application may perform 
poorly if the sub-applications are scheduled naively, e.g., in 
an edge deployment that can only execute one task at any 
time, where each task is scheduled individually. Therefore, 
we further propose a variant bin-packing optimization that 
gang-schedules[12 – 13] and co-locates applications firmly on 
EC resources to fully utilize available resources. We aim to 
schedule and execute all the tasks by considering dependen⁃
cies and resource demands, such that the actual scheduling 
and execution time is minimized. In summary, to achieve 
our Edge-IoT implementation, we address the following criti⁃
cal issues:

• We investigate a situation whereby multiple IoT systems 
can intelligently offload their complex applications to an edge 
deployment with sufficient resource availability to meet the 
resource-level demands of the applications, thus facilitating a 
resource-aware offloading scheme by enabling faster interac⁃
tions among the applications to maximize their performance.

• Specifically, we derive a multi-task ML resource require⁃
ment and execution time estimation, so as to aid the selection 
of edge deployment with suitable resource availability.

• To guarantee optimal usage of edge resources and faster 
execution of tasks, we further propose a variant bin-packing 
optimization approach through gang scheduling of multi-
dependent tasks, which co-schedules and co-locates tasks 
firmly on available nodes to avoid resource wastage.

• We show that Edge-IoT is capable of minimizing the re⁃
sponse time of IoT applications using minimum resources, and 
conduct extensive experiments to compare the performance of 
our Edge-IoT with several existing approaches using real-
world data-trace from Alibaba Cluster Trace Program, which 
provides information on task dependencies.
2 Related Work

Edge computing has been proven to make the IoT smarter 
by implementing smart connections and operation of IoT de⁃
vices[14]. Emerging IoT technologies, such as the smart city[1], 
healthcare-IoT[2], Internet of Vehicles (IoV) [3–5], connected 
and autonomous vehicles (CAVs)[6], and industry 4.0[7], are uti⁃
lizing EC for data analysis, processing and monitoring within 
their networks to improve both the efficiency and response 
speed. There are a huge number of existing works that have 
addressed the use of EC for IoT applications. For example, in 
Ref. [15], the authors studied multi-user IoT application 
offloading for a mobile edge computing (MEC) system and 
both the resources of computation and communication were co⁃
operatively allocated. The proposed system focuses on mini⁃
mizing both the weighted overhead of local IoT devices and 

the offload measured by the delay and energy consumption. 
The authors in Ref. [16] formulated two novel optimization 
problems for delay-sensitive IoT applications, i. e., the total 
utility maximization problems under both static and dynamic 
offloading task request settings, to maximize the accumulative 
user satisfaction on the use of the services provided by an 
MEC system and show the non-deterministic polynomial time 
(NP) -hardness of the defined problems. Aiming to maximize 
the number of IoT devices through jointly optimizing the un⁃
manned aerial vehicle (UAV) trajectory and service indicator 
as well as resource allocation and computation offloading, the 
authors in Ref. [17] formulated the optimization problem as a 
mixed integer nonlinear programming (MINLP) problem, 
where the chosen IoT devices would complete their computa⁃
tion tasks on time under given energy budgets and co-channel 
interference was taken into account. In Ref. [18], the authors 
studied the service home identification problem of service pro⁃
visioning for multi-source IoT applications in an MEC net⁃
work, by identifying a service home (cloudlet) of each multi-
source IoT application for its data processing, querying and 
storage. They considered two novel service home identifica⁃
tion problems. The work in Ref. [19] presented a joint optimi⁃
zation objective to evaluate the unavailability level, communi⁃
cation delay and resource wastage while allocating the same 
batch of IoT applications to multiple edge clouds. Then, the 
authors proposed an approach to minimizing the joint optimi⁃
zation objective under the condition of certain communication 
delays. In Ref. [20], the authors investigated the issue of joint 
cooperative edge caching and recommender systems to 
achieve additional cache gains by the soft caching framework. 
To measure the cache profits, they formulated the optimization 
problem as an Integer Linear Programming (ILP) problem, 
which is NP-hard.

The above methods leverage EC to offload IoT applications. 
They promise efficiency and better performance, but lack the 
consideration of a learning-based resource-aware offloading 
scheme with joint optimization of task resource demands and 
edge deployment resource availability. Therefore, we propose 
a joint optimization solution that guarantees faster offloading 
and execution of IoT applications in edge computing systems.
3 System Model and Problem Formulation

3.1 System Model
We consider an urban vehicular network environment 

where the IoV applications are offloaded from vehicles to EC 
deployments across various EC-enabled roadside units 
(RSUs), EC-enabled base stations (BSs), etc. We focus on V2I 
application offloading as illustrated in Fig. 3, where each ve⁃
hicle is equipped with a powerful wireless interface that can 
be used to connect with RSUs, BSs, etc. We also consider the 
possibility that each vehicle is equipped with in-vehicle edge 
devices or deployment. For example, an in-vehicle EC deploy⁃

42



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

Uchechukwu AWADA, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi 

Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing   Special Topic

ment may not be as large as the deployments of RSUs, while 
those of the RSUs may not be as large as the deployments of 
BSs, etc., in terms of resource capacity. Therefore, IoV appli⁃
cations can be packaged in containers, i.e., Docker container 
provides a task offloading solution for isolation, portability 
and lightweight from devices to edge clusters, or to deploy it 
to the closest edge deployment with sufficient resource avail⁃
ability whenever it is needed. For such applications, let 
c, m  represent the CPU and memory requirements.

Let E = { Edge1,⋯, EdgeM } represent the set of individual 
participating edge deployments (i. e., in-vehicle, RSU, BS, 
etc.), as a cluster of container-instances (such as an edge de⁃
vice with virtualized container-optimized nodes). With the re⁃
source availability of each participating edge deployment 
C c,m

Edgei
, an informed decision on multi-task offloading can be 

made. Let V = { V1,⋯,VM } represent the index set of vehicles. 
A vehicle Vq can choose to execute its ready application lo⁃
cally in its in-vehicle edge device installation if there is suffi⁃
cient resource availability or it is offloaded to the closest edge 
deployment Edgei⋆ ∈ E with sufficient resource availability. 
Let ϑ [Vq ( t ) ] denote the offloading decision variable, which is 
measured by

ϑ [ ]Vq ( t ) = ì
í
î

1, tasks are offloaded,
0, tasks are processed locally. (1)

A multi-task set C = { T1,⋯, TN } from the vehicles at time t 
requires much CPU and memory for execution. Such resource 
requirement, along with its execution time, is first predicted or 
estimated by a linear regression ML model. The multi-task fea⁃
tures, fmt ( ω, ϵ, γ ) where ω is the number of instances, ϵ is the 
type of tasks, and γ is the dependency depth, are fed into the 
model Θ⋆ to estimate the values of the resource requirement 
and execution time according to
fmt ⋅ Θ⋆ = [ E͂ex1T͂

c, m1 E͂ex2T͂
c, m2 ⋯E͂exN

T͂ c, m
N ] , (2)

where T͂ c, m
i  and E͂ex i

 are the estimated resource requirement 
(in terms of CPU and memory c, m ) and estimated execution 

time for task i, respectively. With these estimated values, a 
suitable edge deployment can be selected and multi-
dependent tasks can be intelligently scheduled with the aim of 
minimizing their actual response time, while maximizing avail⁃
able resources. Assuming that fmt ∈ R1 × d is a d-dimensional 
vector (tensor), the predictor Θ is a (d × ϵ)-dimensional pa⁃
rameter matrix. We use historical data from previously ex⁃
ecuted tasks/jobs based on Keras to train the predictor Θ. 
Keras is a library that wraps TensorFlow complexity into a 
simple and user-friendly application programming interface 
(API). Dataset DS = {(x i, y i ) }n

i = 1 contains d-dimensional ten⁃
sors of data features x i ∈ R1 × d and ϵ-dimensional tensors of 
labels (the actual execution times) y i ∈ R1 × ϵ. The learning 
problem is to solve the following optimization:
Θ⋆ = arg min

Θ ∈ Rd × ϵ

1
2n∑i = 1

n ‖x iΘ - y i‖22 + λ
2  Θ

2
F
 , (3)

where λ is the regularization parameter and  ⋅ F denotes the 
Frobenius norm. Optimization (3) is solved using gradient-
descent, where the model is updated iteratively until conver⁃
gence, i. e., Θt + 1 = Θt - η ( 1

n g (Θt ) + λΘl ), in which η is 
the learning rate, g (Θ ) = 1

n XT (XΘ - Y ) denotes the gradi⁃
ent of the loss function,  X = [ xT1⋯xT

n ]T and Y = [ yT1⋯y T
n ]T  

are the feature set and label set, respectively. To guarantee 
the accuracy of the proposed model, we introduce the normal⁃
ized absolute estimate error (NAEE), defined as:

NAEE = |estimated value - actual value|
actual value , (4)

for both the resource requirement and execution time estima⁃
tion, which serves as the estimation accuracy measure for the 
trained linear regression model.

At time t, while ϑ [Vq ( t ) ] = 0, the multi-task set C ∈ Vq is 
decided to perform local execution procedure in the vehicle 
Vq; while ϑ [Vq ( t ) ] = 1, C ∈ Vq is otherwise to be offloaded to 
the edge deployment ( Edgei⋆) with sufficient resources closest 
to Vq. Multi-task set C is a loosely coupled inter-dependent 
application, as shown in Fig. 1, where each task T ∈ C has 
two resource requirements: CPU and memory, as the total 
number of estimated resources needed for its execution is de⁃
noted as d c, m

T͂ . For each task T ∈ C, let Esh, Est and Ecp denote 
its scheduling time, starting time and completion time, respec⁃
tively. Therefore, the execution time of a task is thus:

Eex = Ecp - Est. (5)
Existing offloading strategies (i.e., Refs. [4], [5], [21], etc.,) 

allow subtasks of an application or a job to be offloaded sepa⁃
rately across different edge deployments, thus creating addi⁃

▲Figure 3. An example architecture of Internet of Vehicles (IoV) multi-
task offloading

∑i = 1
k d c,m

T͂i
= d c,m '

T͂

J ⇒ Edge⋆

C c, m
Edgei

Edge 1

Edge 2

Edge N
︙︙
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tional delay in the application’s response time, as explained 
in Section 1. For example, when a vehicle in such an approach 
begins to offload its tasks, the delay includes three parts: 1) 
the time for offloading subtasks from the vehicle to different 
edge deployments, given as Eof , 2) the time for transmitting 
the results of executed subtasks (known as input data flow) 
from one edge deployment to another edge deployment, given 
as Esub, and 3) the time for transmitting the final result from 
EC deployment to the vehicle, given as E rst. Therefore, the re⁃
sponse time of the vehicle’s job is given as:

E rsp = ∑T ∈ C (Eof + Esub + Esh + Eex ) + E rst. (6)
In this paper, we aim to offload or dispatch a set of applica⁃

tions C belonging to a parked or moving vehicle Vq directly to 
a single and the closest edge deployment Edgei⋆ having suffi⁃
cient resource capacity or availability to accommodate the 
tasks such that Eof is minimized, Esub is avoided, as well as the 
overall Esh and Eex are minimized, namely,
C ⇒ Edge⋆. (7)
Hence, the response time of the vehicle’s job changes to:
E rsp = Eof + ∑T ∈ C (Esh + Eex ) + E rst. (8)
Once C has been offloaded to Edge⋆, Edge-IoT utilizes the 

gang-scheduling[12–13] strategy to co-schedule all the applica⁃
tions at a time in Edge⋆. Given a cluster of container instances 
or nodes Ii ∈ Edge⋆, let I c, m

Edge⋆  denote each node’s resource ca⁃
pacity or availability. In a real scenario where multi-vehicle 
set V ∈ V offload multi-job tasks at t, these applications are 
offloaded as a multi-job set J, i.e., J ⇒ Edge⋆, where its col⁃
lective estimated resource demand denoted as ∑i = 1

k d  c, m
~Ti

=
d c, m '

T͂ . Hence, we can offload J to Edge⋆ with suitable re⁃
source availability. Therefore, the aggregate scheduling time 
and execution time of multi-job set J is given as:

∑J ∈ J∑i = 1
k Esh i

k = Esh', (9)

∑J ∈ J∑i = 1
k Eex i

k = E'ex. (10)
The estimated resource utilization of the edge for multi-job 

tasks is thus

U͂ c, m
Edgei

= ∑J ∈ Jd c, m '
T͂

C c, m
Edgei . (11)

Similarly, U͂ c, m
Edgei

 includes CPU utilization U͂ c
Edgei

 and memory 
utilization U͂ m

Edgei
, which are defined respectively by

U͂ c
Edgei

= ∑J ∈ Jd  c '
T͂

C c
Edgei ,                                                         (12)

U͂ m
Edgei

= ∑J ∈ Jd  m '
T͂

C m
Edgei ,                                                        (13)

where ∑J ∈ Jd  c '
T͂  and ∑J ∈ Jd  m '

T͂  are the total collective esti⁃
mated CPU and memory, respectively. After completing the 
multi-job executions, the final execution results are immedi⁃
ately and deterministically transmitted back to the vehicles.
3.2 Problem Formulation

The basic notations adopted are described in Table 1. 
The objectives are to minimize the response time, E rsp in 
Eq. (8) for all J ∈ J and to maximize the computation or 
cluster resource utilization U c,m

Edge i  in Eq. (11), subject to cer⁃
tain constraints. The response time E rsp in Eq. (8) comprises 
the dispatching or offloading time Eof, the scheduling time 
E'sh, the execution time E'ex, and the transmission time of fi⁃
nal execution results E rst. The closest computation offload⁃

▼Table 1. Notations
Notation

E
T

c, m
C

d c, m
T

Edgei

Edge⋆

RU c
Edgei

, RU m
Edgei

Eex

U  c
Edgei

, U m
Edgei

Description

A set of edge deployments
Individual application or task
CPU and memory resources

A set of containerized applications
Application resource requirements

Individual edge deployment or cluster
Closest edge deployment or cluster

Actual CPU, memory resources usage
Application or task execution time

Cluster CPU, memory resource utilization

Notation

V, V
Ii

I c, m
i

C c, m
Edgei

U c, m
Edgei

U c
Edgei

, U m
Edgei

RU c, m
Edgei

Est, Ecp

U  c, m
Edgei

J, J

Description

A vehicle, a set of vehicles
Container-instance or node in a cluster

Resource capacity or availability of a node
Resource capacity/availability in an edge

Resources used for execution
CPU, memory resource used for execution

Actual resources usage of jobs
Application/task start, completion time

Cluster resource utilization
A job, a set of jobs
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ing policies are jointly adopted in Eof, thus enabling faster 
offloading time.

1) Constraints
The collective resource demand or request of multi-job set 

J at any given time t cannot exceed the collective resource ca⁃
pacity or available in the selected EC deployment:

∑J ∈ Jd c, m '
T͂ ≤ C c, m

Edge⋆ , ∀c, m, (14)
and the unused or inactive nodes Ii ∈ Edge⋆ would be shut 
down. All the nodes are in active or inactive states. An active 
node is a node that is running and currently considered for al⁃
location or has at least a job being started, executing or com⁃
pleting. An inactive node is a node that is not running and is 
not currently considered for allocation or has no job. These 
two states can be expressed as follows:

∀c, m β ( Ii ) = ì
í
î

1, Active  if Ji ∈ [ Est, Ecp, Eex ] ,
0, Inactive if Ji ∉ [ Est, Ecp, Eex ] , (15)

where indicator β ( Ii ) = 1 indicates that node Ii is ready to ac⁃
cept new jobs, and at least job Ji is being started, executing or 
completing, i.e., Ji ∈ [ Est, Ecp, Eex ], on Ii; otherwise β ( Ii ) = 0.

2) Optimization formulation
Hence, maximizing utilization of the selected edge deploy⁃

ment or cluster depends on application orchestration:

Maximize   U͂ c, m
Edgei

= ∑J ∈ Jd c, m '
T͂

C c, m
Edgei  , (16)

subject to     J ⇒ Edge⋆, ∃ , (17)

                   β ( Ii ) ∈ { 0,1 } , ∃ , (18)

                   ∑J ∈ Jd c, m '
T͂ ≤ C c, m

Edge⋆ , ∀c, m . (19)
The constraints in Eqs. (17) to (19) indicate the dispatching 

of multi-job set J to the closest edge having sufficient resource 
capability or availability. More specifically, Eq. (17) is the 
constraint for J offloading, guaranteeing that J is dispatched 
to a cluster such that dependent tasks within each J ∈ J can 
communicate and execute faster. Condition (18) guarantees 
that active nodes (β ( Ii ) = 1) are used for execution and that 
inactive nodes (β ( Ii ) = 0) are shut down. The constraint in 
Eq. (19) guarantees that d c, m '

T  of J does not exceed C c, m
Edgei

 any 
selected cluster. The details of our multi-job dispatching prin⁃
ciple will be discussed in Section 4.1 and Algorithm 1. We 
aim to minimize the number of active nodes used for execution 
by co-locating jobs tightly on each node to maximize resource 

utilization. The details of our co-location strategy will be dis⁃
cussed in Section 4.2 and Algorithm 2.

On the other hand, the overall scheduling time and execu⁃
tion time can be minimized depending on orchestration:

Minimize   ∑J ∈ J∑i = 1
k Esh i

k = Esh' , (20)

subject to    J ⇒ Edge⋆, ∀c, m . (21)

Minimize    ∑J ∈ J∑i = 1
k Eex i

k = Eex' , (22)

subject to    J ⇒ Edge⋆, ∀c, m . (23)
The constraints in Eqs. (21) and (23) guarantee that J is dis⁃

patched to the same cluster such that dependent tasks within 
each J ∈ J can communicate and execute faster. The details of 
our multi-job dispatching principle are given in Section 4.1 
and Algorithm 1.
4 Edge-IoT Algorithm Framework

The proposed Edge-IoT solution in this paper is focused on 
offloading and scheduling. The offloading strategy is based on 
the orchestration of ready multi-job tasks to the closest edge 
deployment with sufficient available resources to accommo⁃
date the tasks, as expressed in Eq. (17), while the scheduling 
strategy involves packing or co-location of these tasks tightly 
on container instances to fully utilize the available resources. 
These components aim at providing optimal performance for 
vehicular multi-task execution in EC systems such that the op⁃
timizations in Eqs. (16), (20) and (22) are achieved.
4.1 Offloading Policy

When sets of vehicular multi-job tasks J = J1,⋯,JN are 
ready to be offloaded, our policy is to offload them to the clos⁃
est edge Edge⋆ with sufficient resource capacity or availabil⁃
ity, i.e., J ⇒ Edge⋆, while ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edge⋆. For the ratio⁃

nale of this strategy, consider the Ericsson Connected Vehicle 
Platform (CVP), which serves about 5.5 million active vehicles 
across more than 150 countries. Assuming that there are 0.1% 
of these vehicles at a location L and at time t deciding to 
offload their multiple tasks i.e., ϑ [V ∈ V ] = 1, we would see 
a total load of 4 000 requests. Executing these loads would re⁃
quire an edge deployment with 40 nodes or container in⁃
stances if we assume that a container instance can co-locate 
100 containerized tasks. To serve these vehicles efficiently, it 
is better to dispatch these tasks as units to a closest edge de⁃
ployment, i.e., J ⇒ Edge⋆, having sufficient resource capacity 
or availability. The closest heuristic given in Eq. (17) is to 
minimize the offloading time Eof and to further minimize the 
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overall response time E rsp. Algorithm 1 describes the offload⁃
ing procedure.
Algorithm 1. Edge-IoT: multi-job offloading
Input: J arrived at time t; Edgei ∈ E; ∑J ∈ Jd c, m '

T͂

Output: Offload J to Edge⋆ with matching C c, m
Edge⋆ such that 

J ⇒ Edge⋆1: for Edgei ∈ E do
2:      if ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edgei

  then

3:          J ⇒ Edgei = Edge⋆4:      else
5:          Offload J to next Edge⋆6:      end if
7: end for
8: if J cannot be offloaded as a whole then
9:      for Edgei ∈ E do
10:         for J ∈ J do
11:              if ∑J ∈ Jd c, m '

T͂ ≤ C c, m
Edgei

 then

12:                  J ⇒ Edgei = Edge⋆13:              else
14:                 Dispatch J to next Edge⋆15:              end if
16:         end for
17:    end for
18: end if

4.2 Scheduling Policy
Once J is offloaded to Edge⋆, our scheduling algorithm uses 

the resource availability I c, m
i  of each container-instance in 

Edge⋆, and the resource demand d c, m '
T  of each J ∈ J to pro⁃

vide efficient co-location such that fewer container-instances 
are used for execution in Edge⋆. Specifically, the gang sched⁃
uling approach is adopted alongside our bin-packing optimiza⁃
tion to co-schedule and co-locate all J ∈ J at a time. Bin-
packing is one of the most popular packing problems. The goal 
is to minimize the number of nodes used as given in optimiza⁃
tion in Eq. (31). Unlike other approaches, such as the first fit 
bin packing problem (FFBPP) [22], it requires the next Ji to be 
placed on the active node; otherwise, it is placed on a new 
node. Our scheduling strategy co-locates multi-dependent 
tasks firmly on nodes (Algorithm 2) such that for any given 
job, resource wastage is avoided and fewer nodes are used for 
execution. It takes the resource demand of multi-job tasks and 
resource availability of nodes as input, then scans all J ∈ J 
and maps them to active nodes in full utilization. Our ap⁃
proach scans all J ∈ J and maps Ji to active nodes in full utili⁃
zation (Line 2 in Algorithm 2 ). All J ∈ J are co-located firmly 
on active nodes, so that resource wastage is avoided and fewer 
nodes are used to execute all jobs concurrently (Lines 4–9 in 
Algorithm 2).

Algorithm 2. Edge-IoT: multi-job co-location
Input: J offloaded to Edge⋆, resource demand of each J ∈ J: 

d c, m '
T͂ , resource availability of each node Ii ∈ Edge⋆: I c, m

i

Output: J is co-located, such that 
Minimize∑Ii ∈ Edge⋆

Ii ≡ Minimize RU c, m
Edge⋆

1: for Ii ∈ Edge⋆ do
2:      if β ( Ii ) = 1 then

3:         I c, m
i = c, m , i.e., initial resource available

4:         for J ∈ J do
5:               if Γ [ J, Ii ] = 0 and d c, m '

T͂ ≤ I c, m
i  then

6:                   J ⇒ Ii7:                   Γ [ J,Ii ] = 1
8:                    I c, m

i = I c, m
i - d c, m '

T͂9:                end if
10:              if I c, m

i  close to zero then
11:                  break
12:              end if
13:         end for
14:      end if
15: end for

Hence, for every J offloaded to Edge⋆, our co-location strat⁃
egy is to find the solution to the problem:

Minimize  ∑
Ii ∈ Edge⋆

Ii ≡ Minimize RU c, m
Edge⋆ = U c, m

Edge⋆

C c, m
Edge⋆

 , (24)

subject to  J ⇒ Edge⋆, |∃  , (25)
∑
J ∈ J

Γ [ ]J, Ii ⋅ d c, m '
T͂ ≤ I c, m

i , ∀c, m , (26)
where

Γ [ ]J, Ii = ì
í
î

1, if J ⇒ Ii,
0, otherwise. (27)

We aim to minimize the number of nodes used for executing 
J, which is equivalent to minimizing the actual resource usage 
in Edge⋆, given as RU c, m

Edge⋆ , which is the ratio of the resources 
used for execution U c, m

Edge⋆  over the edge’s resource capacity 
C c, m

Edgei
. The metric RU c, m

Edge⋆  includes the actual CPU resource 
usage RU c

Edge⋆ and the actual memory resource usage RU m
Edge⋆, which are defined respectively as

RU c
Edge⋆ = U c

Edge⋆

C c
Edge⋆  , (28)

RU m
Edge⋆ = U m

Edge⋆

C m
Edge⋆  , (29)

where U c
Edge⋆ and U m

Edge⋆ are the used CPU and memory re⁃
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sources, respectively, while C c
Edge⋆ and C m

Edge⋆ are the edge’s 
CPU and memory resource capacity, respectively. Then the ac⁃
tual CPU utilization ρ c

DR i
 and the actual memory utilization 

ρ m
DR i

 are defined respectively by

U c
Edgei

=
∑
J ∈ J

d c, m '
T

U c
Edge⋆ , (30)

U m
Edgei

=
∑
J ∈ J

d c, m '
T

U c
Edge⋆ . (31)

Algorithms 1 and 2 are directly connected with minimizing 
Esh', minimizing Eex' as well as maximizing U͂ c, m

Edgei
. Therefore, 

Eq. (25) is the constraint for multi-job set J deployment, guaran⁃
teeing that J is offloaded to the closest cluster such that depen⁃
dent tasks within each J ∈ J can communicate and execute 
faster. As we have stated previously that if J cannot be dis⁃
patched as a whole to a cluster, the dispatcher will allow frac⁃
tional dispatching of each J ∈ J to the closest member edge. 
The constraint in Eq. (26) indicates that the total estimated re⁃
source requirements of co-located jobs d c, m '

T  cannot exceed 
I c, m

i , the node resource availability. The condition in Eq. (27) 
means that Γ [ Ji, Ii ] = 1 if job Ji is placed on the node Ii; other⁃
wise, Γ [ Ji, Ii ] = 0. This is to guarantee that each J ∈ J is 
placed in exactly one node. To solve this multi-job packing 
problem, we have adopted the solving Constraint Integer Pro⁃
grams (SCIP) solver, which is currently one of the fastest math⁃
ematical programming (MP) solvers for this problem.
4.3 Connection with Optimization Objectives

Our objectives are to minimize the total response time of 
multiple IoV applications as stated in Eqs. (20) and (22) and 
maximize the edge cluster resource utilization in Eq. (26). Al⁃
gorithms 1 and 2 together achieve these objectives. By offload⁃
ing multi-job tasks to an edge having sufficient resource avail⁃
ability, Algorithm 1 ensures that any edge deployment se⁃
lected has sufficient resources C c, m

Edge⋆ needed for multi-job ex⁃
ecution such that the dependent tasks can be executed faster, 
ultimately leading to a smaller aggregate scheduling time Esh'  and execution time Eex'. By intelligently packing dependent 
tasks tightly on nodes, Algorithm 2 is capable of fully utilizing 
available resources at EC clusters, ultimately leading to the re⁃
source assigned for the execution of jobs U c, m

Edge⋆  to be fewer 
while guaranteeing it is sufficient for multi-job tasks. More 
specifically, the resource usage (RU) of the cluster for multi-
job tasks is given in Eqs. (28) and (29).
5 Experiment Setup

Our experiment setup consists of six edge deployments dis⁃
tributed across RSUs, BSs and vehicles, as summarized in 

Table 2. These platforms consist of large resource capacity EC 
devices. The input data flow time, final result transmission 
time, vehicle’s speed, and road area were drawn from a uni⁃
form distribution range of (0.2, 0.4] s, (0.4, 4] s, (40, 80] km/h 
and [ 2 km × 2 km ], respectively[23]. Therefore, we conduct ex⁃
tensive experiments with orchestrated sets of multi-dependent 
tasks with heterogeneous resource requests across the EC re⁃
sources. For each deployment, we compare the performance of 
our Edge-IoT with the existing state of the art.

As for applications, the v-2018 version of Alibaba cluster 
trace is used, which records the activities of about 4 000 ma⁃
chines in a period of eight days. The entire trace contains 
more than 14 million tasks with more than 12 million depen⁃
dencies and more than four million jobs, among which we de⁃
ploy a total of 48 jobs with total of 204 tasks (including depen⁃
dencies) for our experiments. The task dependency depth 
among the jobs is in the range of (1, 17 ]. Table 3 lists the de⁃
tails of our multi-job sets.
5.1 Heuristics and Baselines

In our experiments, we assume that all tasks are of high pri⁃
ority. The proposed Edge-IoT utilizes the closest heuristic and 
adopts the gang-scheduling strategy and a variant bin-packing 
optimization to efficiently co-schedule and co-locate multi-job 
tasks in a cluster or edge to minimize the overall response 
time. We consider Edge-IoT as a full dependency and full 
packing (FDFP) approach.

We compare the scheduling approach of Edge-IoT with the 
following three existing schemes, fixing their dispatching 
policy to that of Edge-IoT, as follows:

1) Full dependency and partial packing (FDPP) [5] is an ap⁃

▼ Table 3. Multi-job execution, where the actual resources consumed 
for multi-job execution d c, m

T   are taken from the original Alibaba data 
and the estimated resource demands d c, m '

T͂ are calculated by linear re⁃
gression model

Multi-Job J
1
2
3
4
5

C

5
7
9

12
15

T

22
29
38
52
63

d  c, m '
T͂

1 195.24, 4.35
1 501.5, 5.81
2 011.55, 7.57
2 762.25, 10.4
3 369.68, 12.58

d  c, m '
T

1 135, 3.77
1 325, 4.23
1 820, 5.76
2 560, 8.2

3185, 10.17

NAEE
0.1, 0.15

0.13, 0.37
0.1, 0.3

0.1, 0.26
0.1, 0.23

NAEE: normalized absolute estimate error

▼Table 2. Edge deployments and their resource capacities

Edge Deployment

Edge 1
Edge 2
Edge 3
Edge 4
Edge 5
Edge 6

Edge Device

Acer aiSage (x2)
AWS Snowcone (x10)

Huawei AR502H Series (x6)
HIVECELL (x6)

NVIDIA Jetson Xavier NX (x3)
INTELLIEDGE G700 (x5)

CPU Capacity

12 Cores
20 Cores
24 Cores
36 Cores
36 Cores
48 Cores

Memory 
Capacity/GiB

4
40
12
48
24
80
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proach that executes subtasks of a job locally in the vehicle 
and offloads subtasks to the cloud server and the remaining 
tasks to the RSU for execution at the same time.

2) Full dependency and no packing (FDNP) -1[3] is an ap⁃
proach that offloads all tasks of a job to the same EC deploy⁃
ment, but assumes that at any EC deployment, a node can only 
execute one task at a time, and FDNP-1 schedules one task at 
a time. Therefore, unscheduled tasks must wait in a queue un⁃
til resources become available for the next task(s). Such a 
queue is constructed based on the application priority, where 
it keeps multiple applications in decreasing order of their pri⁃
ority.

3) FDNP-2[4] is an approach that offloads different subtasks 
of a job to different EC deployments, where each node at the 
selected EC deployment can only schedule and execute one 
task at a time, and the task with the highest priority is first se⁃
lected for scheduling.

4) No dependency and partial packing 
(NDPP)[23] is an approach that offloads differ⁃
ent multi-job subtasks to available EC de⁃
ployment, by considering the completion 
deadline of each task. However, this ap⁃
proach does not respect inter-task dependen⁃
cies, but co-locates tasks on a node.
5.2 Comparison of Offloading and Execu⁃

tion Results
The investigation focuses on the IoV 

multi-task response time, which includes the 
multi-job offloading, resource utilization/us⁃
age, scheduling, execution and response 
time. The multi-job execution information 
across the edge deployments, obtained ac⁃
cording to Alibaba data, are listed in Table 
3, where the actual resources consumed for 
the multi-job execution d c, m '

T  are taken from 
the original data. NAEE defined in Eq. (4) 
and listed in Table 3 for resource consumed 
serves as the estimation accuracy measure 
for the trained linear regression model. The 
average NAEE across six deployments is 
0.12 for CPU and 0.23 for memory. Note that 
we only focus on the resource demand esti⁃
mation for multi-job tasks, as the execution 
time estimation is not required to select suit⁃
able on-premise edge deployments given in 
Table 2. The results obtained by Edge-IoT 
(FDFP), FDPP, FDNP-1, FDNP-2 and 
NDPP are compared.

1) Resource usage and resource utilization
Fig. 4 shows the task deployment ratio of 

Edge-IoT with four baseline schemes. It can 
be seen that for each multi-job task 

offloaded, Edge-IoT is able to deploy its constituent tasks to a 
single edge. This is because Edge-IoT selects the closest edge 
with sufficient resource availability to accommodate all the 
tasks, and co-locates them tightly in each node. Recall that 
some of the baseline schemes, i. e., FDNP-1 and FDNP-2, do 
not co-locate tasks on each node, but assume each node can 
only execute one task at a time. Therefore, FDNP-1 can nei⁃
ther offload all its subtasks nor execute them at a time, given 
the number of nodes at each edge. For example, Multi-Job 1 
that consists of five jobs is deployed and co-located on edge 
Edge-1 by Edge-IoT, and in turn, allows for faster input data 
flow transmissions. For the same Multi-Job 1, FDPP, FDNP-2 
and NDPP deploy the jobs across two edge deployments. Al⁃
though FDPP and NDPP can partially co-locate tasks at each 
of the edges, the three schemes incur additional execution de⁃
lays due to input data flow transmissions across the two edge 
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▲Figure 4. Tasks deployment ratio across the edge deployments
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▲Figure 5. Average resource usage across the edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing
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deployments. On the other hand, FDNP-1 is not able to deploy 
all the jobs on edge Edge-1, because it executes a task on 
each node at a time. Hence, it can only execute several tasks 
at a time, given the number of nodes available in the edge 
cluster, while the remaining tasks wait in a queue. Fig. 5 
shows the average resource usage of the multi-job tasks de⁃
ployed by Edge-IoT with those of the four baseline schemes 
across the edge clusters. It can be seen that Edge-IoT con⁃
sumes the fewest resources by using a single edge for each 
multi-job task, while FDNP-2 uses the highest resources (up 
to three edge deployments) for the same multi-job task. The av⁃
erage resource utilization comparison is shown in Fig. 6. 
Again, Edge-IoT achieves the highest resource utilization com⁃
pared with the four baseline schemes. We now examine the 
performance of Edge-IoT compared with the baseline schemes 
for each multi-job offloaded (as shown in Table 3) in detail.

• Multi-Job 1: Edge-IoT dispatches 100% of the tasks in a 
single-hop offloading to Edge-1. It first optimizes the deploy⁃
ment by gang-scheduling and co-locating as many tasks in a 
node as possible to fully utilize the available resources in the 
node. These tasks are tightly packed on nodes using the pack⁃
ing algorithm, which uses all of Edge-1 resources to execute 
the tasks, and achieves 95% resource utilization. For the same 
Multi-Job 1, some of the baseline schemes such as FDPP, 
FDNP-2 and NDPP offload the tasks across two edge clusters 
(Edge-1 and Edge-2), using up to two times more resources 
than Edge-IoT. FDNP-1 schedules one task on a node at a 
time using a single edge deployment (Edge-1). Thus, it uses 
all available resources (100%) at the edge deployment and 
keeps the unscheduled tasks on a task queue until resources 
become available. Overall, Edge-IoT achieves better resource 
usage and utilization compared to the four baseline schemes, 
as shown in Figs. 5 and 6.

• Multi-Job 2: This multi-job task consists of seven jobs 

with a total of 29 tasks, where each job has a task dependency 
in the range of (1, 5 ]. Edge-IoT optimizes the deployment to 
ensure that the resources are fully utilized. Containers provide 
isolation to running applications, making it possible to co-
locate multiple applications on the same node without any in⁃
terference. A single container-optimized node can execute 
more containerized applications, given that there are sufficient 
available resources. For scheduling, Edge-IoT deploys all the 
tasks at a time on edge cluster Edge-2, using 70% of the re⁃
sources, while with three edge deployments, FDPP, FDNP-2 
and NDPP use 50%, 20% and 21% on Edge-1, 100%, 45% 
and 33% on Edge-2, and 21%, 20% and 50% on Edge-3. 
Edge-IoT and FDNP-1 utilize 95% and 55% of resources, re⁃
spectively. Although FDNP-1 uses all available resources in 
the cluster, it achieves low resource utilization due to its in⁃
ability to co-locate tasks on nodes, which results in resource 
under-utilization. Again Edge-IoT outperforms all the four 
baseline schemes in terms of task deployment ratio, resource 
usage and utilization.

• Multi-Job 3: Edge-IoT offloads all tasks of Multi-Job 3 to 
edge Edge-3. This edge deployment is made up of six Huawei 
AR502H Series edge devices, with CPU and memory capacity 
of 24 vCPU and 12 GiB, respectively. The multi-job task con⁃
sists of nine jobs, with a total of 38 tasks, where each job has a 
task dependency range (1, 8 ]. Edge-IoT improves resource us⁃
age by using a single edge and up to three times fewer re⁃
sources compared with the four baseline schemes, as can be 
seen from Fig. 5. It also achieves 76% resource utilization in a 
single cluster. On the other hand, with three edge deploy⁃
ments, FDPP and NDPP achieve 85% and 89% resource utili⁃
zation on Edge-2; 94% and 94% on Edge-3; and 89% and 85% 
on Edge-4). FDNP-1 and FDNP-2 perform worst with the high⁃
est resource consumption and the lowest resource utilization.

• Multi-Job 4 and Multi-Job 5: These multi-job tasks are 
offloaded by Edge-IoT to Edge-4 and Edge-
5, respectively. Among all the schemes, 
Edge-IoT uses the least resources for each 
multi-job execution across the two edge clus⁃
ters. Specifically, Edge-IoT consumes 72% 
and 89% of resources at Edge-4 and Edge-5, 
respectively. It also achieves the highest re⁃
source utilization of 98% and 99% across 
the two clusters, compared to the four base⁃
line schemes. FDPP consumes 21%, 31% 
and 31% of resources across Edge-3, Edge-4 
and Edge-5, and NDPP consumes 31%, 
31% and 21% ofresources across Edge-4, 
Edge-4 and Edge-6. FDNP-1 consumes all 
available resources at Edge-3 and Edge-4 
for Multi-Job4 and Multi-Job5, respectively, 
while recording the lowest resource utiliza⁃
tion at each cluster. FDNP-2 consumes the 
second highest resources and achieves the ▲Figure 6. Average resource utilization across the edge deployments
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second lowest resource utilization for the 
same multi-job task execution.

2) Multi-Task Scheduling, Execution and 
Response Time

The aggregate job scheduling time Esh' de⁃
fined in Eq. (9), which is the time for placing 
multi-job tasks on the nodes in a cluster, is 
an important performance metric to assess 
the integrated edge clusters. Another impor⁃
tant performance metric is the aggregate job 
execution time Eex' defined in Eq. (10). The 
response time E rsp'defined in Eq. (8) is even 
more important. Figs. 7, 8 and 9 compare the 
scheduling time, execution time and re⁃
sponse time, respectively, attained by the 
five schemes.

It can be seen that the scheduling time is 
typically very small, and the execution time 
and response time by contrast are signifi⁃
cantly larger. Across the edge clusters, Edge-
IoT consistently achieves the fastest schedul⁃
ing, execution and response, compared to the 
other four benchmark strategies. Note that we 
focus on the scheduling time, execution time 
and result transmission time components of 
the response time. This is because the offload⁃
ing time Eof' is relatively small due to our 
offloading policy which ensures that jobs are 
offloaded to the closest edge cluster and 
within a single-hop offloading. Specifically, 
for Multi-Job 1, Edge-IoT achieves a very fast 
scheduling, which is 11.6  times faster than 
FDPP and NDPP, and 16 times faster than 
FDNP-1 and FDNP-2. For Multi-Job 2 sched⁃
uling, Edge-IoT achieves significantly shorter 
scheduling time than the four benchmark 
strategies, i. e., Edge-IoT is 12 times faster 
than FDPP and NDPP, and 29 times faster 
than FDNP-1 and FDNP-2. For Multi-Job 3, 
FDNP-1 and FDNP-2 attain the lowest sched⁃
uling time, while FDPP and NDPP attain the 
second lowest scheduling time. Edge-IoT 
achieves the best performance with up to 38 
times faster than the other four schemes. For 
Multi-Job 4 and Multi-Job 5, Edge-IoT again achieves the fast⁃
est scheduling, followed by FDPP and NDPP, while FDNP-1 
and FDNP-2 have the worst scheduling performance.

In terms of the execution time, it is important to note that 
the input data flow time also contributes to the total execution 
time of a job. FDPP, FDNP-2 and NDPP incur additional time 
due to their approaches of task offloading across multiple clus⁃
ters, which leads to input data flows (which is in the range of 
(0.2, 0.4] s) across the clusters. Edge-IoT is 111.4, 22.3, 112 

and 23 times faster than FDNP-1, FDPP, FDNP-2 and NDPP, 
respectively, for executing Multi-Job 1, while for Multi-Job 2 
execution, it is approximately 204, 29, 205 and 30 times 
faster, respectively. Similarly, for Multi-Job 3, Multi-Job 4 and 
Multi-Job 5 executions, Edge-IoT achieves approximately up 
to 943.8, 63, 945.7 and 64.8 times shorter execution time than 
FDNP-1, FDPP, FDNP-2 and NDPP, respectively. The signifi⁃
cant advantage of Edge-IoT in terms of the aggregate job ex⁃
ecution time can be explained as follows. It deploys sets of 

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 7. Task scheduling time across edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 8. Task execution time across edge deployments

FDNP: full dependency and no packing
FDPP: full dependency and partial packing

IoT: Internet of Things
NDPP: no dependency and partial packing

▲Figure 9. Task response time across edge deployments
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multi-job tasks as a unit through the gang scheduling strategy 
in a single-edge deployment. These applications are deployed 
and executed concurrently. By contrast, the benchmark ap⁃
proaches schedule and execute the given DAGs individually 
and in parts across multiple edge deployments, resulting in in⁃
put data flow transmission delays and longer time to execute 
the overall tasks.

Recall that the response time of a job defined in Eq. (8) is 
the addition of its offloading time, scheduling time, execution 
time and final result transmission time. Therefore, the ulti⁃
mate aim is to minimize the response time of IoV applications 
offloaded to EC. Fig. 9 compares the response time of Edge-
IoT and the four benchmark schemes. Edge-IoT outperforms 
the four benchmark schemes by achieving shorter response 
time for all the multi-job tasks, and up to 169, 12, 169.2 and 
12.4 times faster than FDNP-1, FDPP, FDNP-2 and NDPP, re⁃
spectively.
6 Conclusions

Edge-IoT, a machine learning-enabled IoT application or⁃
chestration in an EC system proposed in this paper, has dem⁃
onstrated superior QoS in resource management and IoT multi-
task orchestration in edge clusters. Unlike Edge-IoT, the exist⁃
ing methods do not deploy all the ready tasks at a time or in a 
single edge cluster or do not respect task dependencies, lead⁃
ing to more edge resource usage and cluster under-utilization 
as well as causing longer task execution time. This paper has 
presented Edge-IoT to improve edge resource efficiency and 
performance. We have utilized a resource-aware offloading 
strategy that selects the closest edge cluster suitable for a 
given job, and a container-based bin packing optimization 
strategy that packs or co-locates tasks tightly on nodes to fully 
utilize available resources. To evaluate our approach, we have 
illustrated use cases of real-world CPU and memory-intensive 
tasks from Alibaba cluster trace, which records the activities 
of both long-running containers (for Alibaba’s e-commerce 
business) and batch jobs across eight days. We have com⁃
pared our approach with the state-of-the-art dependency-
aware IoV task orchestration baseline strategies. Our proposed 
algorithm achieves both the highest edge cluster resource utili⁃
zation and the minimum scheduling, execution and response 
time for IoV multi-job tasks compared to the baseline strate⁃
gies. The gains achieved by Edge-IoT as observed from our ex⁃
periments include faster response time of the overall tasks and 
improved usage of edge resources.
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Abstract: Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems. In the meanwhile, the over⁃
head cost of channel state information and beam training is considerable， especially in dynamic environments. To reduce the overhead cost, 
we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method. With online learning of users’ moving trajecto⁃
ries, the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate. Considering practical implementa⁃
tion, we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of 
deep Q-learning to reduce the training complexity. Furthermore, we propose a scalable state-action-reward design for scenarios with different 
users and antenna numbers. Simulation results verify the effectiveness of the designed method.
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1 Introduction

Millimeter wave (mmWave) communications have 
gained extensive attention due to vast bandwidth re⁃
sources. The beamforming technique with large an⁃
tenna arrays can improve the mmWave communica⁃

tion network coverage and make up for severe free-space path 
loss. MmWave signals are highly directional with beamforming, 
and thus beam tracking is needed to ensure the stability and 
quality of connected links in mobile scenarios. Currently, 
mmWave systems typically use hybrid analog-digital architec⁃
tures to reduce the hardware cost and power consumption.

Traditional beam alignment exhaustively scans the whole 
beam space, and the introduced high overhead is unaccept⁃
able for mobile scenarios. The efficiency of beam training can 
be improved by the hierarchical searching method with a 
multi-resolution codebook. Refs. [1 – 3] have reduced the 
beam training overhead by exploiting prior knowledge of the 
mmWave channel such as the angle of departure (AoD) or the 
angle of arrival (AoA), and a low-resolution codebook is fur⁃
ther considered in fast-varying scenarios[3]. As a heuristic solu⁃
tion, a deep learning based fast beamforming design method is 
introduced, without complex operations and iterations in con⁃
ventional methods[4].

To better utilize implicit prior information embedded in the 
practical environments, data-driven approaches are fea⁃
sible[5–7]. A fingerprint database is used in Ref. [8] to access 
historical training records according to the user’s location. In 
Ref. [9], a data-driven data fusion module is developed to com⁃
bine AoD and time of arrival (ToA) positioning, and 
positioning-based beam tracking methods are introduced for 
high-speed railway scenarios. In general, offline learning re⁃
quires a large number of collected samples in advance, and 
recollection is needed once the environment changes, leading 
to difficulties in deployment. Meanwhile, reinforcement learn⁃
ing can realize online learning without offline data, and opti⁃
mize the policy through interactions with the environment. To 
reduce beam training overhead, Ref. [10] proposes a multi-
armed bandit (MAB) based approach where the training 
beams are selected by the upper confidence bound strategy. 
However, the simple MAB model has limited ability to learn 
from the surroundings, furthermore, a centralized deep Q-
learning (DQL) method is proposed in Ref. [11], where the 
beam training problem is modeled as a Markov decision pro⁃
cess (MDP). However, due to its multi-user single-agent 
model, the action space exponentially explodes with the 
growth of the user number and lacks scalability to different 
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user and antenna numbers.
In this paper, under the centralized training and distributed 

execution (CTDE) framework, we propose a beam tracking 
method with distributed DQL for the beam tracking problem 
in dynamical mmWave scenes. Specifically, a distributed 
beam tracking algorithm is designed to adapt to the changing 
environments, where each user is regarded as an agent. We 
also propose several enhancements on the vanilla DQL, in⁃
cluding simplified deep Q-network (DQN) training and scal⁃
able state-action-reward designs. The main contributions are 
summarized as follows:

• We develop multi-agent DQL for simultaneous multi-user 
beam tracking, and the DQL method follows the CTDE frame⁃
work, where all users share the same policy learned with col⁃
lected data from all the users.

• We prove that the beam tracking problem is a quasi-static 
optimization problem instead of an MDP, and a simplified 
DQL training scheme is proposed to reduce the complexity.

• We propose scalable state-action-reward designs for the 
DQL which can work in scenarios with different BS antenna 
and user numbers. In comparison, the existing centralized 
DQL methods cannot be transferred to a different scenario due 
to a mismatch of input and output.

The rest of this paper is organized as follows. Section 2 pres⁃
ents the system model. Section 3 describes the beam tracking 
design with a distributed DQL method. Section 4 gives the 
simulation results. Section 5 draws the conclusions.
2 System Model and Problem Formulation

2.1 System Model
We consider the downlink transmission in a link-level 

mmWave communication system composed of one base station 
(BS) and U mobile users (MU). The BS is equipped with M 
transmit antennas and Nrf radio frequency (RF) chains which 
are fully-connected, and each MU has a single receiving an⁃
tenna. One data stream is simultaneously allocated to each 
user, and thus U = Nrf. On the BS side, the hybrid analog-
digital precoding is considered. The analog precoding matrix is 
denoted by A ∈ CM × Nrf, where the u-th column, i.e., A[ :,u], is 
the analog precoding vector of user u, and it is selected from 
the discrete Fourier transformation (DFT) codebook F ∈ CM × M. 
Similarly, the digital precoder is V = [ v1,⋯,vNrf ], where the u-

th column H = [h1,⋯,hNrf ]
Hdenotes the digital precoding vec⁃

tor, and s is the independent and identical distributed (i. i. d.) 
data stream. The received signal can be written as:
y = HAVs + w, (1)

where w ∼ CN𝒩(0,σ2
n INrf ) denotes zero mean additive white 

Gaussian noise (AWGN) with variance σ2
n, and the channel 

matrix is denoted by vu ∈ CNrf × 1, where hu is the downlink 

channel vector from the BS to MU u.
Without sacrificing generality, the DFT codebook F is con⁃

structed by evenly sampling the beam space, and thus the i-th 
column is:
F i = a (ϕi ) |

ϕi = π
2 ( )2i

M - 1 , (2)
where the array response with azimuth being ϕ is:
a (ϕ) = 1

M
[1,⋯,ejkdmsin ( )ϕ ,⋯,ejkd ( )M - 1 sin ( )ϕ ], (3)

where k = 2π
λ , and  λ is the wavelength.

Instead of directly estimating high-dimensional channel 
state information (CSI) { hu }, we use low-dimensional equiva⁃
lent CSI { h̄u } obtained by beam scanning. Specifically, the 
equivalent channel is a multiplication of the channel matrix H 
and the analog precoding matrix A, and then the BS can be 
considered as a transmitter with Nrf ports. The equivalent 
channel vector between the BS and MU u is h̄u = AHhu, which 
will be used for digital precoding.
2.2 Problem Formulation

As illustrated in Fig. 1, the precoded signal is transmitted 
within a correlation block which is divided into three phases: 
beam scanning, hybrid precoding, and data transmission. Af⁃
ter the beam scanning in time slot t, we can obtain the equiva⁃
lent channel vectors { h̄u }. Then, the digital precoding problem 
is modeled as:

max
{ }vu

∑
u ∈ U
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F ≤ Pm, (4)

where Pm denotes the maximal transmit power of the BS. 
Eq. (4) can be solved by minimum mean square error 

▲Figure 1. Three phases of a time slot
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(MMSE) precoding. We adopt a classical linear MMSE to 
derive the transmitter digital precoder as follows:
D = ξH̄ ( H̄H H̄ + σ2

n INrf )-1
, (5)

where H̄ = [ h̄1,⋯,h̄rf ]
T, and ξ is a factor to control the BS 

maximum transmit power.
We evaluate the system performance by an effective sum-

rate. Let ft be the optimal value of an objective function in 
Eq. (4). Considering the beam training overhead, the effec⁃
tive achievable sum rate during time slot t is defined as

Rt = (1 - ||F t tS + tP

tC ) ft, (6)
where F t is a subset of the codebook F and its elements are 
the training beams to be scanned, |F t | denotes the correspond⁃
ing cardinal number, tS is the duration of one training beam, tP denotes the duration of precoding and online learning, and tC 
denotes the duration of one time slot. With previous known ex⁃
perience, the investigated problem is to design a beam track⁃
ing algorithm to maximize time average of Eq. (6), where the 
digital precoding vectors { vu } in Eq. (4) are derived from the 
beam scanning results.
3 Beam Tracking with Deep Q-Learning

3.1 Preliminary of Deep Q-Learning
Without loss of generality, single-agent DQL is developed 

for a problem modeled as a process of continuous interac⁃
tions between an intelligent agent and the environment, i.e., 
MDP. In each interaction, the agent conducts an action a by 
a policy π with an observed state s, then receives a feedback 
reward r from the environment, and enters a new state s′. The 
goal is to learn a strategy for cumulative reward maximiza⁃
tion. In a value-based algorithm, the action is selected by the 
values of state-action pairs, i.e., Q-values. The Q-value is de⁃
fined as follows:

Qπ( s,a) = Eπ
é

ë
ê
êê
ê∑

k = 0

∞
γk rk + 1|s,a

ù

û
ú
úú
ú
, (7)

where γ ∈ [ 0,1) is the discount factor. The mapping from the 
state to the action values is realized by a learnable network DQN.
3.2 Centralized Deep Q-Learning

Intuitively, the investigated multi-user beam tracking prob⁃
lem can be modeled as an MDP, and the centralized DQL 
method is considered in Ref. [11]. Specifically, during time-
slot t, the modulus of the channel vector of MU u in beam 
space is given as：

I t
u = abs (FHh t

u ). (8)
Stacking { I t

u } into a matrix I t, we have
I t = [ I t1,⋯,I t

U ] ∈ RM × U, (9)
where we can obtain an “image” I t as the state st, which de⁃
scribes the distribution of effective paths or beam directions. 
Since mmWave channels are sparse in the beam domain and 
the training beam set is a subset of the DFT codebook, I t is a 
sparse image and most elements of I t are near zero.

To achieve the goal of sensing the environment, an action is 
defined based on the difference in the indices between two ad⁃
jacent beams. An action for a single MU is defined by a pair of 
integers ( μ, σ), where μ denotes the difference of the indices 
of the optimal beams in two adjacent time-slots, i.e.,

μt = (bt - bt - 1 )modM, (10)
where b denotes the beam index, “mod” denotes the modular 
arithmetic, and σ denotes the number of beams used to sweep 
the beam space, respectively. The action space corresponding 
to MU u is denoted by

Au =
ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

( )μ1 - ê
ë
êêêê ú

û
úúúú

σ12 , μ1 + ê
ë
êêêê ú

û
úúúú

σ12 ,⋯,
ü
ý
þ( )μL - ê

ë
êêêê ú

û
úúúú

σL2 , μL + ê
ë
êêêê ú

û
úúúú

σL2 modM, (11)
where L is the size of the action space. The action space for all 
MUs is a product of {Au }, i. e., A = ∏UAu. Finally, the im⁃
mediate reward in time-slot t is given in Eq. (6), i. e., rt = Rt. The scanned beams are F t = at ∈ A.

In DQL[12], a separate target network is introduced to stabi⁃
lize DQN training, the weights of which change slowly com⁃
pared with the primary network.

However, several shortcomings of the centralized framework 
must be observed. Firstly, as the user number U increases, the 
cardinality of DQN input space |S | = M × U grows linearly, 
and cardinality of output space |A | = LU grows exponentially. 
The training is difficult for such a DQN since the state-action 
space increases exponentially with user numbers. Addition⁃
ally, exploration in high-dimensional space is inefficient, and 
thus the learning can be impractical. Secondly, the DQL lacks 
scalability in changing user number U and the BS antenna 
number M.
3.3 Simplicated DQN Training

3.3.1 Centralized Training and Distributed Execution Framework
Single-agent DQL for multi-user beam tracking can lead to 

action space explosion[13]. To address this issue, we propose 
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the multi-agent DQL with CTDE. Specifically, each MU is re⁃
garded as one agent. All agents are synchronized and distrib⁃
uted, and they share the same policy for online training and in⁃
ference. The collected data from all agents are aggregated to 
form a centralized training set, and the shared policy is 
trained with the centralized training set. The shared policy is 
then executed by all agents. Thus, the training is centralized 
and the execution is distributed. The CTDE framework can 
solve the space explosion problem, and also improve network 
scalability and reduce training difficulty.
3.3.2 Non-MDP Problem

To adapt to the dynamic environment, low computational 
complexity is significant for online training, therefore we pro⁃
pose to simplify the vanilla DQN method, i. e., reducing the 
beam tracking problem as a static optimization problem and 
solving it in a greedy manner[13]. From the perspective of MDP, 
the following conclusion can be drawn.

Theorem 1. When the state transition function is indepen⁃
dent of the current action and the reward is independent of the 
state to be transferred to, the maximized cumulative reward 
under the optimal policy is equivalent to the combination of 
single-step rewards.

The description of the assumed conditions can be math⁃
ematically formulated as:

Pa
s → s′ = Ps → s′, (12)

ra
s → s′ = ra

s , (13)
where P denotes state transition probability. The proof of 
Theorem 1 is given in the Appendix.

In practice, the beam alignment success rate reaches a cer⁃
tain extent p thr close to 100%. Once the misalignment occurs, 
the BS instantly realigns and a partial observation is obtained. 
This observation is very similar to the one observed when the 
beam is successfully tracked. Thus, the new state observed 
from the environment is mainly determined by the moving us⁃
ers and the fading channels, and is weakly related to the taken 
action. Additionally, when the reward is sum-rate Rt in Eq. 
(6), the current reward is irrelevant to the new state. There⁃
fore, we can regard that the system satisfies Eqs. (12) and 
(13), and we set the discount factor γ as 0. Formally, the Q-
value function in Eq. (7) can be simplified as follows:

Q ( st,at ) = rt. (14)
In summary, when Theorem 1 holds, we can replace the 

above Eq. (7) with Eq. (14) for DQN training, which has 
the following benefits:

1) With no need for target networks, the training complexity 
is reduced;

2) The variance of Q-value estimation is reduced, and thus 
the training is more efficient.

3.4 State, Action and Reward Design
To make the choice of action in each state logical, the de⁃

sign of the state must reflect the state of the user’s interaction 
with the environment. Since the irregular movements of the 
user are the main cause of the dynamic changes in the environ⁃
ment, the state can be defined according to the movement of 
the user. We propose to use the index difference of optimal 
beams measured in successive time slots as the state. This 
state design reflects changes in the direction and rate of the 
user’s motion over a period of time.

In the state design of centralized DQL, the state space 
grows linearly with the user number U. To achieve scalability 
against U, firstly we propose to decouple the centralized state 
I t as a bunch of distributed states { I t

u }. Thus, once training is 
finished, the distributed state can be extended to the scenarios 
with any user number.

The mmWave channel is sparse in the beam domain, thus 
most of the element values in I t

u are equal or close to zero. Be⁃
sides, in the beam tracking period t for user u, only a small 
subset of training beams is scanned. Therefore, except for σt

u scanned beams, (M - σt
u ) elements in I t

u are zero, indicating 
that we can retain the scanned beams as the distributed state 
and leave out the others. Secondly, as shown in Fig. 2, we pro⁃
pose to cap I t

u with a mask m t
u ∈ RM × 1, the center of which is 

bt
u and the half width is B = maxL

l = 1 σl, to achieve scalability 
against the BS antenna number M. Formally, the masked dis⁃
tributed state is:

st
u = |I t

u,i
( )bt

u + B modM

i = ( )bt
u - B modM. (15)

The other elements in I t
u are left out. Similarly, we decouple 

the centralized action a ∈ A as { au ∈ Au }. Thus, the state 
space is 2B and the action space is L which are fixed and irrel⁃
evant to the user number U. This indicates the proposed dis⁃
tributed design is scalable to changing user numbers and BS 
antenna numbers.

Reward acquisition requires completion of analog and digi⁃
tal precoding. At time-slot t, the effective achievable rate of 
user u in Eq. (6) is defined as the reward

▲Figure 2. State of user u after masking

Note: The modular arithmetic is neglected.

mask mt
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rt
u = (1 - ||F t tS + tP
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. (16)
The scanned beams is F t = ⋃U

u = 1at
u.In summary, compared with the centralized DQL intro⁃

duced in Section 3.2, the proposed distributed DQL has the 
following benefits:

1) The input and output of the DQN are greatly reduced, 
and thus the DQN is simplified.

2) The DQN is scalable to the changing user number U and 
the BS antenna number M.

3) The sample number is U times higher than that of the 
centralized DQL.

We give two instances of DQNs in Table 1, and they both 
have a three-layer neural network (NN). The activation func⁃
tion f ( ⋅ ) and the neuron number of each DNN layer are 
listed on the left and the right sides, respectively. The acti⁃
vation functions are rectified linear unit (ReLU): f (x) =
max (0, x), and linear: f (x) = x.
3.5 Distributed Beam Tracking Algorithm Procedure

For clarity, the flow of the distributed beam tracking algo⁃
rithm is summarized in Algorithm 1. At the beginning of each 
episode, the entire codebook is scanned to obtain the initial 
state st

u for every single user. Then, the agent selects action at by 
the ε-greedy strategy, and ε for the ε-greedy strategy varies as

ε = n to - ncur
n to , (17)

where n to is a fixed value. We set another fixed value n thr that 
is less than n to, and ncur varies as:

ncur = {n, n < n thr
n thr n ≥ n thr . (18)

In Algorithm 1, by performing steps (1), rt and digital pre⁃
coding vectors are obtained. Then downlink data transmis⁃
sion is executed in step (2). In step (3), the parameters of 
DQN are updated.

The ε-greedy strategy is used to explore the environment, 
the existence of which can lead to the failure to find the opti⁃
mal beam at each time-slot, i.e., misalignment. Five consecu⁃

tive moments of mis-alignment are defined as an incident. 
Once an incident occurs, the optimal beam initialization pro⁃
cess starts immediately from this moment, which is called 

“calibration” and is achieved via exhaustive search.
Algorithm 1: Distributed beam tracking algorithm
1:  Initialize: 1) DFT codebook F; 2) DQN with random 

weights θ; 3) replay memory D;
2:  for each episode do
3:     scan optimal beam in codebook to obtain U initial 

states
4:     while t ≥ k and t ≤ snapshot do
5:       (1) obtain analog and digital precoding
6:            a) choose action at according to the ε-

greedy strategy
7:            b) execute action at and observe the 

next state st + 1
8:            c) compute reward rt and obtain 

( st,at,rt )
9:            4) obtain precoding vectors
10:      (2) transmit data during the remaining of time-

slot t
11:      (3) update parameters θ of DQN
12:           a) store transition ( st, at, st + 1, rt ) in D
13:           b) sample batch of transitions from D
14:               c) update θ with the gradient descent 

optimizer
15:       let t ← t + 1
16:      end while
17: end for

4 Simulation Results
In this section, we evaluate the performance of the proposed 

beam training algorithm via numerical results. The MUs are 
assumed to move along a circle and the BS is located at the 
center. To reflect dynamical changes of the distances between 
the BS and the MUs, the time-varying path-loss of the MUs is 
incorporated into the mmWave channel model. The movement 
velocity of the MUs is assumed to be stochastic, and obeys a 
known probability law. Accordingly, switching to another 
beam in the next time-slot is also stochastic and obeys some 
probability law.

For each MU, the probability that the optimal beam of the 
MU switches to the i-th beam of the next S beams is denoted 
by pS,i( i = 0,⋯, S), where pS,0 is the probability that the opti⁃
mal beam of the MU in the next time-slot is still the current 
beam. For example, two probability distributions are consid⁃
ered, where pS,i is given by:

 pS,i = e-ηi ( ∑
k = 0

S

e-ηk )-1
. (19)

The parameter η > 0 defines the “decay” rate. Specifically, 

▼Table 1. Deep Q-network (DQN) setting

DQL type
Output layer
Hidden layer
Input layer

Centralized DQL
linear,LU

ReLU,32
linear,M × U

Distributed DQL
(proposed)

linear,L
ReLU,32
linear,2B

DQL: deep Q-learning      ReLU: rectified linear unit
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we consider S = 4 and η = 1.0. For each MU u, the action 
space Au is given by
Au = {(a,b) |a = { 0,1,2,3 } ; b = {1,3,5 }}. (20)
Next, we evaluate the performance of the designed DQL al⁃

gorithm. The simulation results of the centralized DQL in Ref. 
[11] , the proposed simplified DQL in Section 3.3.2 named  
centralized DQL (simplified) and the proposed distributed 
DQL are provided for comparison. Besides, the exhaustive 
search beam tracking, the bandit learning based beam track⁃
ing, Q-learning based beam tracking and the centralized DQL 
algorithm are studied in Ref. [11], and the simulation results 
show that the centralized DQL algorithm is the best. We use 
the average effective sum-rate (AESR) and the probability of 
successful beam (PSB) alignment as the two metrics for perfor⁃
mance evaluation. The simulation platform is presented as Py⁃
thon 3.9, Tensorflow 2.9.0, CPU Intel i7-9700K and GPU 
Nvidia GTX-1070Ti.

The PSB for different beam tracking algorithms with M =
32, U = 2 is shown in Fig. 3. We have noticed that the pro⁃
posed centralized DQL (simplified) has the fastest convergence 
speed and the highest PSB performance. Meanwhile, the cen⁃
tralized DQL converges slowly. The proposed distributed DQL 
converges fastly when the epoch number is up to 200, but it 
cannot work well with small epoch numbers lower than 100.

The PSB for different beam tracking algorithms with M = 64 
is shown in Fig. 4, and the user number U ∈ {1,2,3,4 }. We 
have observed that the proposed centralized DQL (simplified) 
and distributed DQL have similar PSB performance, with vary⁃
ing user numbers. However, the centralized DQL cannot work 
well and has a poor PSB performance. Besides, the training 
time costs are listed in Table 2. The time cost increases signifi⁃
cantly for centralized methods and remains fixed for the pro⁃
posed distributed method (the cost time rises due to interactions 

with the environment). As U increases, the action space grows 
exponentially for the centralized methods, and the training is 
very difficult for U > 4. This indicates the proposed distributed 
method is computationally efficient.

The AESR of the proposed distributed DQL for different 
beam tracking algorithms with U = 2 is shown in Fig. 5, and 
the user number M ∈ { 32, 64, 128, 256 }. Similar to the case 
with different user numbers, the proposed centralized DQL 
(simplified) and distributed DQL have similar AESR perfor⁃

▲Figure 4. PSB performance versus user numbers

DQL: deep Q-learning    PSB: probability of successful beam

▲Figure 5. AESR performance versus BS antenna numbers

AESR: average effective sum-rate     BS: base station     DQL: deep Q-learning
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▼Table 2. Training time cost

User Number
U = 1
U = 2
U = 3
U = 4

Centralized DQL/s
10.61
11.91
16.32
87.55

Centralized DQL
(simplified)/s

8.82
10.18
14.10
61.97

Distributed DQL
(proposed)/s

10.09
11.51
12.82
14.40

DQL: deep Q-learning

▲Figure 3. PSB performance versus training epochs

DQL: deep Q-learning     PSB: probability of successful beam
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mance, with varying BS antenna numbers, and the central⁃
ized DQL has a poor AESR performance.

The scalability is studied in Fig. 6. The distributed DQL 
indicates the training data and the test data are independent 
and identically distributed (i.i.d). The distributed DQL (gen⁃
eralized) indicates the training data has a fixed user number/
BS antenna number, meanwhile the test data have changing 
user numbers/BS antenna numbers. The results show that 
the learned DQN in changing scenarios has the same AESR 
performance as those with fixed scenarios, and the scalabil⁃
ity and generalization ability is verified. The centralized 
methods cannot work in this test due to mismatched input/
output.
5 Conclusions

In this paper, we investigate multi-user beam tracking in dy⁃
namical mmWave scenes, and a multi-agent DQL method un⁃
der centralized training and distributed execution framework 
is proposed for online learning. The vanilla DQL is improved 
in many aspects, such as distributed architecture, rational sim⁃
plification of training, and state-action-reward designs. More⁃
over, the proposed method is adaptable to the environment, 
and is scalable for different BS antenna numbers and user 
numbers. Simulation results demonstrate the effectiveness of 
the proposed algorithm.
Appendix

Proof. With the policy π and the initial state s1, the T-step 
cumulative reward is defined as:

V T
π ( )s1 = Eπ

é

ë
êêêê

ù

û
úúúú

1
T ∑

t = 1

T

rt ∣s1 =

∑
a1 ∈ A

π ( )a1∣s1 ∑
s2 ∈ S

Pa1
s1 → s2 × ( )1

T ra1
s1 → s2 + T - 1

T V T - 1
π ( )s2 . (19)

According to Eqs.  (12) and (13), the state value function in 
Eq.  (19) can be rewritten as:

V T
π ( )s1 = ∑

a1 ∈ A
π ( )a1∣s1 ∑

s2 ∈ S
Ps1 → s2 ×

( )1
T ra1

s2 + T - 1
T V T - 1

π ( )s2 =
1
T ∑

a1 ∈ A
π ( )a1∣s1 ra1

s1 + T - 1
T ∑

s2 ∈ S
Ps1 → s2 V

T - 1
π ( )s2 . (20)

The full unrolling of Eq.  (20) is given as:
V T

π ( )s1 = 1
T ∑

a1 ∈ A
π ( )a1∣s1 ra1

s1 +
1
T ∑

t = 2

T ∑
at ∈ A

π ( )at∣st ∑
st ∈ S

∏
t′ = 1

t - 1
Pst′ → st′ + 1 rat

st.. (21)
As the state transfer is independent of the action and the 

state can be independently represented as s =< s1,⋯,sT + 1 >.  
Therefore, the maximization of Eq.  (21) with respect to at, ∀t 
can be decomposed into the subproblem:

max
at

V T
π ( s) ⇔ max

at

rat
st . (22)

max
at

V T
π ( )s = max

at

1
T ∑

t′ = 1

T ∑
at′ ∈ A

π ( )at′∣st′ rat′
st′ ⇔

max
at

∑
at ∈ A

π ( )at∣st rat
st

= max
at

rat
st
  . (23)

In summary, it can be proved that the maximization of Eq.  
(21) with respect to {at∣∀t} can be decomposed into T subprob⁃
lems:

max
{ }at∣∀t

V T
π ( s) ⇔ {max

at

rat
st
∣∀t}. (24)

The equivalence proof of γ-discounted cumulative reward is 
similar.
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Abstract: Device-to-device (D2D) communications underlying cellular networks enabled by unmanned aerial vehicles (UAV) have been re⁃
garded as promising techniques for next-generation communications. To mitigate the strong interference caused by the line-of-sight (LoS) air-
to-ground channels, we deploy a reconfigurable intelligent surface (RIS) to rebuild the wireless channels. A joint optimization problem of the 
transmit power of UAV, the transmit power of D2D users and the RIS phase configuration are investigated to maximize the achievable rate of 
D2D users while satisfying the quality of service (QoS) requirement of cellular users. Due to the high channel dynamics and the coupling 
among cellular users, the RIS, and the D2D users, it is challenging to find a proper solution. Thus, a RIS softmax deep double deterministic 
(RIS-SD3) policy gradient method is proposed, which can smooth the optimization space as well as reduce the number of local optimizations. 
Specifically, the SD3 algorithm maximizes the reward of the agent by training the agent to maximize the value function after the softmax opera⁃
tor is introduced. Simulation results show that the proposed RIS-SD3 algorithm can significantly improve the rate of the D2D users while con⁃
trolling the interference to the cellular user. Moreover, the proposed RIS-SD3 algorithm has better robustness than the twin delayed deep de⁃
terministic (TD3) policy gradient algorithm in a dynamic environment.
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1 Introduction

Current communication systems and applications are 
pursuing higher and higher transmission rates, 
which brings greater challenges to the scarce spec⁃
trum resources. Thus, spectrum-efficient communi⁃

cations become increasingly important, which promotes the 
development of the next-generation cellular networks. 
Among the various spectrum-efficient techniques, the device-
to-device (D2D) communication underlying the cellular net⁃
work has been considered a promising technique for boosting 
the communication rates between two neighbor nodes, since 
it allows the two users to transmit signals directly without 
passing through a base station (BS)[1]. To maximize the perfor⁃
mance of the D2D and cellular network, the location of the 
BS usually needs to be optimized, which is difficult to realize 
for the traditional terrestrial cellular network. Fortunately, 

unmanned aerial vehicles (UAVs) have played a critical role 
in 6G networks due to their flexibility. For instance, UAVs 
can work as the aerial BS to improve the network capacity 
and expand the coverage area, and thus help overcome the 
limitations of the terrestrial wireless communication at the 
physical layer[2].

With the UAV aerial BS, the dominant links are usually 
line-of-sight (LoS) links that benefit the intended receivers 
while causes strong interference to the unintended users. In 
this case, reconfigurable intelligent surface (RIS) can be em⁃
ployed to reconstruct the transmission environment and thus 
reach a compromise between the performances of the in⁃
tended and other users[3–5]. RIS consists of many low-cost 
passive reflection elements, where each element can adap⁃
tively adjust its reflection amplitude and/or phase to control 
the intensity and the direction of the electromagnetic wave. 
In this way, RIS can enhance and/or weaken the strength of 
the reflected signal for different users[3]. For the D2D commu⁃
nication system with plenty of low-power terminal devices, This work is supported by the National Natural Science Foundation of 

China under Grant Nos. 62201462 and 62271412.
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RIS can be deployed to improve the quality of the communi⁃
cation links for cellular user equipment (CUE) and mitigate 
the co-channel interference between CUE and D2D users[6]. 
There have been some studies on RIS-assisted D2D commu⁃
nications. For example, the authors in Ref. [7] proposed a 
relaxation-based algorithm called Riemannian manifold 
based alternating direction multiplier (RM-ADMM) to opti⁃
mize the system configuration, which is a quadratic con⁃
straint quadratic optimization (QCQP) problem. This kind 
of proposal adopts traditional optimization methods, which 
may converge to the local optima and cause system perfor⁃
mance loss.

Recently, artificial intelligence (AI) has been regarded as 
a powerful tool to solve complicated non-linear optimization 
problems. In Ref. [8], a deep learning-based method is pro⁃
posed for the effective online configuration of the smart sur⁃
face, where the proposed deep neural network (DNN) model 
maps the target user’s information and the optimal phase ma⁃
trix to maximize the user’s received signal strength by calcu⁃
lating the measurement coordinates. It is worth noting that 
the deep learning method requires large-scale data sets, 
which is impractical for some applications. To overcome the 
limitations of deep learning, deep reinforcement learning 
(DRL), which combines deep learning and reinforcement 
learning, has been widely used in wireless communication 
systems. In Ref. [9], the non-convex optimization problem 
consisting of beamforming design, power control, and inter⁃
ference coordination is jointly optimized by DRL. In Ref. 
[10], the authors investigated the simultaneous wireless infor⁃
mation and power transfer network where the UAV and the 
RIS are deployed. By exploiting the DRL to optimize the RIS 
passive beamforming, the total harvested energy is maxi⁃
mized while meeting the quality of service (QoS) require⁃
ments for communications. Ref. [11] is a very early attempt 
to develop a framework for integrating DRL techniques into 
optimization designs with no need to understand explicit 
models or specific mathematical formulas of the wireless en⁃
vironment to solve large-dimensional optimization problems.

At present, the commonly used algorithms for processing 
continuous action space in DRL are deep deterministic 
policy gradient (DDPG) and its improved version, the twin 
delayed deep deterministic (TD3) policy gradient. But the 
introduction of the underestimation bias by the TD3 algo⁃
rithm will affect the performance. Studies have shown that 
softmax’s smoothing effect can help learn and reduce the 
number of local optima[12]. Thus, the authors in Ref. [13] 
proposed a softmax deep double deterministic (SD3) policy 
gradients algorithm. The analyses show that the error be⁃
tween the value function and the optimal value under the 
softmax operator is bounded.

To overcome the complex problem of traditional algorithm 
calculation, we exploit the SD3 algorithm to jointly design 
the transmit power of the UAV, the transmit power of the 

D2D users, and the RIS phase configuration. The main con⁃
tributions of this paper are summarized as follows:

1) Firstly, we formulate a RIS-assisted UAV-D2D commu⁃
nication system model. In our considered system, the UAV is 
used as an aerial BS to overcome the limitations of conven⁃
tional terrestrial BSs. Besides, to investigate the impact of 
the time-varying channels on the system performance, the 
motion state of the UAV moving from the CUE to the D2D us⁃
ers is taken into consideration.

2) Secondly, we propose a RIS-SD3 algorithm to solve the 
complex optimization problem involved in the RIS-assisted 
UAV-D2D communication system. Unlike the TD3 algo⁃
rithm, SD3 merges the softmax operator into the action key of 
continuous control, which makes the optimization environ⁃
ment smoother and thus is conducive to empirical learning.

3) Finally, unlike previous studies that exploit alternating 
methods to optimize the transmit power and the RIS phase, 
the proposed algorithm optimizes the transmit power and the 
phase of the RIS simultaneously. To be more specific, the 
sum rate of the D2D users is adopted as an immediate reward 
for training the RIS-SD3 algorithm. The sum rate is gradually 
maximized by iteratively adjusting the parameters of the RIS-
SD3 according to the reward.

The remainder of this paper is organized as follows. The 
system model is described in Section 2. In Section 3, the 
RIS-SD3 algorithm is introduced to optimize the phase shift 
and the transmit power. In Section 4, simulation results are 
presented to evaluate the performance of the proposed algo⁃
rithm. The conclusions are given in Section 5.
2 System Model

We consider a practical RIS-assisted UAV-D2D communi⁃
cation network. For example, in a dense urban environment 
with tall buildings, the primary user, like CUE, is close to 
the RIS, while the D2D user is located at the edge of the cell. 
The detailed system description is as follows.
2.1 System Descriptions

The system model is depicted in Fig. 1. We consider a 
downlink cellular transmission assisted by UAV and RIS. 
The system consists of one UAV serving as the BS, one RIS, 
K CUE, and D D2D pairs. To simplify the following analysis, 
only one CUE is considered in this paper, and a scenario 
with multiple CUE will be studied in future work. The BS, 
CUE, D2D transmitter (DT), and the associated D2D receiver 
(DR) are all single antenna devices. Besides, the RIS is 
equipped with M reflecting elements and the reflection coeffi⁃
cient matrix Θ can be described as Θ =
diag ( β1 ejθ1, β2 ejθ2,⋯, βM ejθM ).

The CUE receives the desired signals including the sig⁃
nals sent by the BS and the signals reflected from the RIS. In 
addition, it will receive the interference signals from all the 
D2D pairs. Therefore, the signal received by the CUE can be 
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written as:
yc = (hH

r,cΘhr + hc) Pc s + ∑
d = 1

D

hd,c Pd μd + nc, (1)
where hr ∈ CM × 1, hr,c ∈ CM × 1, hc ∈ C, and hd,c ∈ C represent 
the channel gains of UAV-RIS, RIS-CUE, UAV-CUE, and 
the d-th DT to CUE, respectively; Pc ∈ R and s ∈ C denote 
the transmit power and the transmit signal of the BS-CUE 
link, respectively; Pd ∈ R and μd ∈ C are the transmit power 
of the d-th DT and the data transmitted to the d-th DR, re⁃
spectively; nc~CN (0,σ2

c ) is the additive Gaussian white 
noise at the CUE.

The wireless transmission link between the user and the 
UAV can be either LoS or NLoS. Thus, the received signal 
power at each user’s location is given by Ref. [14].

Pr = ì
í
î

ïï Pcd
-α0,  LoS 

ηPcd
-α0,  NLoS , (2)

where d is the distance between the user and the UAV, α0 is 
the path loss exponent over the user-UAV link, and η is an 
additional factor related to the NLoS link. The LoS probabil⁃
ity can be expressed as PLoS = 1

1 + A exp (-B (θ - A) ) , where 
A and B are constant values that depend on the environment. 
In this paper, we set A = 9.6, B = 0.15, and η = 20 dB ; θ =
180
π sin-1( h

d ) is the elevation angle where h is the altitude 
between the user and UAV. The probability of NLoS is 
PNLoS = 1 - PLoS[14].

For the terrestrial links, we assume that they follow the 
Rayleigh distribution where the path-loss is given by 
ρ ( d

d' )-v

, where ρ, d and v represent the path loss at the refer⁃

ence distance of d′ = 1, the individual link distance, and the 
corresponding path loss exponent, respectively.

Note that the m-th element of the diagonal matrix can be 
written as ϕm = βm ejθm, where θm ∈ [ 0, 2π) is the phase shift. 
Generally speaking, phase-shift control achieves better pas⁃
sive beamforming performance than amplitude control, so we 
assume ideal reflection by the RIS so that the signal power is 
lossless from each reflection element, e.g., the amplitude re⁃
flection coefficient βm = 1[15].

The Signal to Interference plus Noise Ratio (SINR) for the 
received signal of CUE can be calculated as:

SINRc = || hH
r,cΘhr + hc

2
Pc

∑
D

d = 1
|| hd,c
2
Pd + σ2

c . (3)
Thus, the achievable rate of CUE is:

Rc = log2(1 + SINRc ) = log2
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. (4)
The signals received at the d-th DR consists of the desired 

signal received from the d-th DT, the interference signal 
from the UAV, and the reflected signal from the RIS, in addi⁃
tion to the interference signal received from the other D2D 
pairs. Thus, the signal received at the d-th DR is given by:

yd = τd Pd μd + (hH
r,dΘh r + hd ) Pc s + ∑

D

l ≠ d

λl,d Pl μl + nd, (5)
where hr,d ∈ CM × 1, hd ∈ C, τd ∈ C, and λl,d ∈ C denote the 
channel gains of RIS-DR d, UAV-DR d, DT d-DR d, and 
DT l-DR d, respectively; Pl and μl are the transmit power of 
the l-th DT and the transmit data of D2D to the l-th DR, re⁃
spectively; nd ∼ CN (0,σ2

d ) denotes the additive Gaussian 
white noise at the d-th DR.

Similarly, the received SINR for the d-th DR is given by:
SINRd = || τd

2
Pd

∑
l ≠ d

D

|| λl,d
2

Pl + || hH
r,dΘhr + hd

2
Pc + σ2

d . (6)
The achievable rate of the d-th DR is
Rd = log2(1 + SINRd ) =

log2
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▲ Figure 1. System model of a practical RIS-assisted unmanned aerial 
vehicle (UAV)-D2D communication network
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Accordingly, the sum rate of all the D2D pairs is
R total = ∑

d = 1

D

Rd. (8)

2.2 Problem Formulation
In order to increase the sum rate of the D2D pairs while 

limiting the amount of interference to the CUE, the problem 
is formulated as a non-convex optimization problem as fol⁃
lows

max
p,Θ,pc

∑
D

d = 1 log2(1 + SINRd ) (9)

s.t. ∑
D

d = 1
| hd,c |

2
Pd ≤ IT, (9a)

0 ≤ Pd ≤ Pt, ∀d ∈ {1,2,⋯,D }, (9b)
0 ≤ Pc ≤ Pmax, (9c)
SINRc ≥ SINRthr, (9d)
Rd ≥ Rd-thr, ∀d ∈ {1,2,⋯,D }, (9e)
θm ∈ [ 0, 2π), ∀m ∈ {1,2,⋯,M }, (9f)
| ϕm | = 1, ∀m ∈ {1,2,⋯,M }, (9g)

where P = {P1, P2,⋯, PD} is the transmit power vector for 
D2D pairs; Pt is the maximum transmit power of DT and Pmax is the maximum transmit power of UAV . IT in Constraint (9a) 
indicates the maximum allowable interference to the cellular 
transmission. Constraints (9b) and (9c) denote the transmit 
power limit for each DT and the maximum power limit for the 
UAV BS. Constraints (9d) and (9e) denote 
the QoS requirements for CUE and D2D 
pairs. Constraints (9f) and (9g) specify 
the phase shift and the amplitude con⁃
straint of the RIS.

Due to the non-convexity of the objective 
function and the performance loss of the 
traditional successive convex approxima⁃
tion (SCA) method[16], we propose a DRL-
based framework to solve the non-convex 
optimization problem.
3 Proposed RIS-SD3 Algorithm

3.1 Description of SD3
SD3 is the abbreviation for the deep 

double deterministic policy gradient al⁃

gorithm, which enables a better value estimation by reduc⁃
ing the overestimation bias in DDPG and smoothing the op⁃
timized environment, thus contributing to experiential 
learning[13].

The process of the SD3 algorithm is shown in Fig. 2. SD3 
includes an actor network μ (⋅) and a critic network Q (⋅). The 
actor network consists of two online and two target policy net⁃
works with the different parameters θμ

i ,θμ'
i (i = 1,2). Simi⁃

larly, the critic network consists of two online and two target 
Q-networks with different parameters θQ

i , θQ'
i (i = 1,2).

According to Fig. 2, we can see that at the time step t, the 
agent selects an action at based on the actor network 
μ ( st ; θμ ). Meanwhile, a random noise Nt ∼ N (0,σ ) is added 
to interact with the environment to more fully explore the 
policy. Thus, the action at can be written as

at = μ ( st ; θμ ) + Nt. (10)
After the agent executes the action, it will return a reward 

defined as below
Qt + 1 ( s, a ) = rt ( s,∣a ) + γEs' ∼ p (⋅∣s,a )[Vt( s') ] , (11)

where Vt + 1 ( s) =  softmaxβ(Qt + 1 ( s, ⋅ )) is the softmax opera⁃
tor, which is used to update the value function Qt + 1 ( s,a ) it⁃
eratively. Since the softmax operator itself involves integrals 
and thus is difficult to handle in continuous action space, we 
use the following unbiased estimation to replace the term 
Vt ( s′) as in Ref. [13]:

Ea' ∼ p

é
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(12)

where p (a′) is the probability density function of Gaussian 
distribution.
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Optimizer

Online policy 1
network θ  μ1

Online policy 2
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Target policy 1
network θ  μ'1

Target policy 2
network θ  μ'2

Update Policy gradient

Soft update

▲Figure 2. Workflow of the deep double deterministic (SD3) policy gradient algorithm
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For ease of representation, we introduce
Q̂i( s',a') = min (Qi( s',a' ; θQ'

i ) ,Q-i( s',a' ; θQ'-i ) ), (13)
and

Υ -i
SD3( s') = soft maxβ(Q̂i( s', ⋅ ) ). (14)

With Eqs. (13) and (14), the target values for the critic net⁃
work in Fig. 2 can be estimated as:

yi = r + γΥ -iSD3( s') , i = 1, 2. (15)
Then, the critic network optimizes its parameters θQ

i  by 
minimizing the loss function given by:

L = 1
NB

( yi - Qi( s,a ; θQ
i ) ) 2

. (16)
After the critic network updates its parameters, the actor net⁃

work is updated by θi
μ following the applying the chain rule.

∇θμ
i

=
|

|

|

|
||
|

||

|
|
||
|1

NB
∇aQi( )s,a ; θi

Q

s = si,a = μ ( )si ; θi
μ

∇θμ μ ( )s ; θi
μ

s = si, (17)
To make the learning process more stable, the SD3 also 

uses a soft target update approach:
θQ'

i ← τθQ
i + (1 - τ )θQ'

i ,
θμ'

i ← τθμ
i + (1 - τ )θμ'

i , (18)
where τ is the learning rate for updating the target critic net⁃
work and the target actor network.
Algorithm 1: Learning algorithm of RIS-SD3
Input: hr,c, hr, hr,d, hc, hd,c, hd, τd, λl,d
Output: the optimal action
   a = {popt1 ,popt2 ,θopt1 ,θopt2 ,⋯,θopt

M ,popt
c }

1  Initialize actor networks μ1, μ2 and critic networks 
Q1,Q2with random parameters θμ1, θμ2, θQ1 , θQ2 ;

2  Initialize the size of experience replay NR, the size of 
mini-batches NB and replay buffer R;

3  for t = 1,…,T do
4    Select an action with exploration noise Nt~N (0, σ )

based on executing action a, obtained reward r, new 
state s′ and done;

5    Store transition tuple ( s, a, r, s', done) in R;
6    for i = 1, 2 do
7      Sample a random minibatch of N from R;
8      Sample K noises Nt~N (0,σ ) ;
9      Set â' = μ′i( si + 1 ) + clip (Nt, - c,c) ;
10      Set Q̂ ( s',â') = min j = 1,2(Qj( s',â' ; θQ'

j ) ) ;

11      Set softmaxβ(Q̂ ( s',â') ) as Eq. (12)
12      Update critic net via minimizing Eq. (16) ;
13      Update actor net by policy gradient in Eq. (17) ;
14      Update the target networks
               θQ'

i ← τθQ
i + (1 - τ )θQ'

i  ;
               θi

μ' ← τθi
μ + (1 - τ )θi

μ'

15    end
16  end

3.2 Details of RIS-SD3
In this paper, the environment depends on our proposed 

system model. At the time step t, the agent can collect the 
current channel information, and combined with the current 
state, the agent selects the action and calculates the reward 
according to the current policy. There are E episodes in the 
whole training process, and each episode is iterated by T 
times. The detailed workflow of the proposed RIS-SD3 algo⁃
rithm is shown in Algorithm 1. The state space, action space 
and reward function are given as follows.

1) State: The state st at the t-th time step is constructed by 
the received signal of CUE, the UAV’s location at the t-th 
time step, and the SINR of D2D pairs. So the total number of 
the state is D +M + K + 1.

2) Action: The action is constructed by the transmit power 
vector P = {P1,P2,⋯,PD}, the transmit power of BS Pc and 
the phase θi (i = 1,2,⋯,M ) of RIS. In order to reduce the 
complexity of the action space, we convert both phase and 
power into one-dimensional vectors, i. e.,   action =
{P1,P2,…PD,θ1,θ2,…θM,Pc}. So the total number of the action 
is D +M + 1.

3) Reward: In the proposed RIS-SD3 algorithm, the sum 
rate of the D2D pairs is taken as the reward. Furthermore, in 
order to satisfy the minimum signal-to-noise ratio and the 
maximum interference requirements for CUE users and the 
QoS requirements for D2D users, the reward can therefore be 
set as:

Rt =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

 if ∑
d = 1

D

|| hd,c
2

Pd ≤ IT

R total , SINRc ≥ SINRthr
Rd ≥ Rd-thr

 0, else . (19)
The reward for each episode is:
R = ∑

t = 1

T

Rt. (20)

4 Numerical Results
In order to facilitate the analysis, we consider D=2, and 

the other parameters used in the algorithm are shown in 
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Table 1, and the establishment of the coordinate system is 
shown in Fig. 1. After continuous training tests, we then find 
the training work the best when the main hyper-parameters 
in the RIS-SD3 are set as follows: E = 10 000, T = 61, γ =
0.99, and τ = 0.005.
4.1 Impact of Parameters Settings of RIS-SD3

In our proposed RIS-SD3 algorithm, we use a constant 
learning rate and batch size for all networks to investigate 
their effects on the performance and convergence speed for 
the DRL-based approach. Fig. 3 demonstrates the average 
rewards versus time episodes at different learning rates. It 
can be seen that different learning rates have a great impact 

on the performance of the proposed RIS-SD3 algorithm. As 
shown in Fig. 3, RIS-SD3 with actor and critic learning rates 
of 1e-6 performs best. Specifically, when the learning rate is 
too large, the algorithm will be unstable and even cannot 
converge. On the contrary, when the learning rate is too 
small, the convergence rate will be slow or even incapable to 
learn, and thus the training time is wasted.

Batchsize is the number of data used for each update 
when using the optimizer. In short, it is how many data we 
want to put into the model at a time to train. This value is be⁃
tween 1 and the total number of training samples.

As shown in Fig. 4, we explore the impact of batchsize on 
the training model. If the batchsize is too small, time-
consuming and training efficiency is low, the training data 
will be very difficult to converge, resulting in a state of 
under-fitting. In a certain range, generally speaking, the 
larger the batchsize, the more accurate the determined de⁃
scending direction, and the smaller the training shock. The 
batchsize increases to a certain extent, and its determined 
decline direction has basically not changed. Therefore, the 
larger the batch size is, the more stable the gradient will be, 
while the smaller the batch size is, the higher the random⁃
ness of the gradient will be. However, if the batch size is too 
large, the the demand for memory will be higher, and it is 
not conducive to the network jumping out of the local mini⁃
mum. We can see that batchsize = 211 is the best, so this 
value is used in the following simulations.
4.2 Comparisons with Benchmarks

To further demonstrate the performance and the time com⁃
plexity of the proposed RIS-SD3 algorithm, we consider the 
following baseline schemes. Firstly, we use the exhaustive 
searching approach to find the approximate optimal value, 
where the transmit power and the phase are limited to ten 
equally spaced values. Then, for the weighted minimum ▲Figure 3. Effect of the learning rate
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▲Figure 4. Effect of batchsize on the training model
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▼Table 1. Parameters of the proposed system
Parameter

Location

SINRthr
Rd_thr

IT

Pmax
Pt

β

α0

ν

ρ

UAV
RIS
CUE
DT1

Distance of D2D
Size area of D2D

Minimum SINR of CUE
Minimum achievable rate of D2D

Maximum interference of CUE
Max transmit power of UAV
Max transmit power of DT

Path loss coefficient
Path loss exponent over the user-UAV link

Path loss exponent
The path loss at the reference distance

Value
From (0, 0, 1) m to (0, 60, 1) m

(0, 10, 2) m
(20, 0, 1) m

(20, 60, 1) m
5 m

10 m
12 dB
2 dB

−30 dB
30 W

10 W, 20 W, 30 W
−30 dB

3
2.5

0.01
CUE: cellular user equipment
D2D: device-to-device
DT: D2D transmitter

RIS: reconfigurable intelligent surface
SINR: Signal to Interference plus Noise Ratio
UAV: unmanned aerial vehicle
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mean-square error (WMMSE) -power” baseline scheme, we 
use the WMMSE algorithm in Ref. [17] to optimize the trans⁃
mit power of D2D. For the “max-power and random-phase” 
baseline scheme, we assume that the RIS configures the 
phase shifts in a random manner with the maximum D2D 
transmit power. For the “without RIS” baseline scheme, we 
assume that the D2D transmit power is random without the 
deployment of the RIS. Moreover, the TD3 algorithm is also 
introduced. Unless otherwise specified, the learning rate for 
the RIS-SD3 algorithm is set as 1e-6.

As shown in Fig. 5, compared with the TD3 algorithm for 
continuous actions, the proposed RIS-SD3 algorithm is more 
robust under dynamic channel conditions because it refers 
to the soft operator in Ref. [13]. Compared with the more ac⁃
curate exhaustive searching results and the WMMSE algo⁃
rithm, the proposed RIS-SD3 algorithm can obtain a larger 
sum rate. In addition, it can be seen from the figure that the 
proposed algorithm and the exhaustive searching algorithm 
are more robust to the position change of the UAV. Finally, 
by comparing the results of the proposed algorithm with the 

“without RIS” scheme, we improve the system performance 
by introducing RIS, since the RIS provides the additional 
degrees of freedom (DoF) to improve the sum rate. In addi⁃
tion, since exhaustive search only considers partially dis⁃
crete values, its effect is slightly lower than that of the RIS-
SD3 algorithm that considers continuous values.

Moreover, it can be seen from Fig. 5 that the sum rate fluc⁃
tuates as the position of UAVs changes, especially for the 
TD3 and the WMMSE algorithms. Actually, due to the intro⁃
duction of RIS, the system performance is not that sensitive 
to the position of the UAV. The up and down phenomena in⁃
dicate that the performance of the TD3 algorithm is poor for 

the considered scenario, which motivates us to propose the 
RIS-SD3 algorithm. As for the WMMSE algorithm, the reason 
for the fluctuation is that this algorithm only optimizes the D2D 
user’s transmit power, while the phase is random.

To evaluate the time complexity of the proposed method, 
the time consumption of the proposed scheme and the base⁃
line schemes are shown in Table 2, where the device we use 
is NVIDIA GPU RTX 3090. It can be observed that the time 
consumption of the proposed algorithm is less than most of 
the baselines, but a little bit more than the TD3 algorithm.

However, it should be noted that the TD3 cannot adapt to 
the change of the UAV location, as observed in Fig. 5.
4.3 Impact of Parameter Settings on System

To get a better understanding of the RIS-SD3 method, we 
investigate the impact of the max power of DT. When more 
transmitting power is allocated to D2D users, the proposed 
RIS-SD3 algorithm can obtain a higher sum rate. This obser⁃
vation is consistent with the results in the traditional multi-
input single-output (MISO) system. Through the joint design 
of transmit beamforming and phase shift, the common chan⁃
nel interference of multi-user MISO systems can be effec⁃
tively reduced, thereby improving performance.

UAV location/m

Proposed RIS-SD3
TD3
Exhaustive

WMMSE-power
MAX-power and random-phase
Without RIS

Sum
 rat

e/(b
it·s

−1 ·H
z−1 )

12
11
10

9
8
7
6
5
4
3 0  10 20 30 40 50 60

[33 10.35]

▲Figure 5. RIS-SD3 in comparison with other baseline schemes

RIS: reconfigurable intelligent surfaceSD3: deep double deterministicTD3: delayed deep deterministic
WMMSE: weighted minimum mean-square errorUAV: unmanned aerial vehicles

▼Table 2. Time consumption comparison
Scheme

Proposed RIS-SD3
TD3

Exhaustive
WMMSE-power

Max-power and random-phase
Without RIS

Time Consumption/s
1.74
1.08

3.79e+05
1.68
3.67
3.98

RIS: Reconfigurable intelligent surface
SD3: softmax deep double deterministic
TD3: delayed deep deterministic
WMMSE: weighted minimum mean-square error

▲Figure 6. Sum Rate under different Pt
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As can be seen from Fig. 6, during the movement of the 
UAV from (0, 0, 30) m to (0, 60, 30) m, there are also certain 
fluctuations in the system about the sum rate. In fact, the 
UAV only changes continuously by 1 m, while the receiver 
may not have time to feel this change, and then the UAV 
moves to the next position. Therefore, it can be seen from 
Fig. 6 that the undulating change is random.

In addition, we simulate the effect of the maximum trans⁃
mitting power of UAV Pmax on the D2D sum rate. It can be 
seen from Fig. 7 that, as the maximum transmitting power of 
the UAV increases, the D2D sum rate decreases. This is be⁃
cause with the transmit power of the UAV increases, the in⁃
terference of the cellular user to the D2D user increases, so 
the D2D sum rate decreases.

It can also be seen from Fig. 7 that in the process of the 
drone moving from (0,0,30) m to (0,60,30) m, the sum rate 
has certain ups and downs. The specific reason may be that 
the UAV changes less, so the fluctuations are more random, 
but the overall change is not very significant.
5 Conclusions

Based on the latest progress in DRL for continuous action 
space, a RIS-SD3 optimization algorithm is proposed to solve 
the joint power allocation and phase optimization problem in a 
dynamic RIS-assisted UAV-D2D communication network. 
With the RIS-SD3 algorithm, the sum rate of the D2D users is 
maximized while meeting the QoS requirement for the cellular 
user. Specifically, by introducing softmax operators, the pro⁃
posed algorithm learns about the environment more effi⁃
ciently, and thus has better robustness to the change of the en⁃
vironment. Simulation results show that the proposed RIS-SD3 
method can learn from the environment by observing the in⁃
stantaneous reward got from the time-varying wireless chan⁃
nels, and then gradually improves its behavior to the optimal 

result. Compared with the baseline schemes, the proposed 
scheme can increase the sum rate as well as improve the ro⁃
bustness of the transmission environment.
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Abstract: The emerging new services in the sixth generation (6G) communication system impose increasingly stringent requirements and 
challenges on video transmission. Semantic communications are envisioned as a promising solution to these challenges. This paper pro⁃
vides a highly-efficient solution to video transmission by proposing a scalable semantic transmission algorithm, named scalable semantic 
transmission framework for video (SST-V), which jointly considers the semantic importance and channel conditions. Specifically, a seman⁃
tic importance evaluation module is designed to extract more informative semantic features according to the estimated importance level , fa⁃
cilitating high-efficiency semantic coding. By further considering the channel condition, a cascaded learning based scalable joint semantic-
channel coding algorithm is proposed, which autonomously adapts the semantic coding and channel coding strategies to the specific signal-
to-noise ratio (SNR). Simulation results show that SST-V achieves better video reconstruction performance, while significantly reducing the 
transmission overhead.
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1 Introduction

The wireless communication paradigm is envisioned 
to shift from connecting things to connecting intelli⁃
gence, imposing new challenges on the developing 
sixth generation (6G) communication systems. On 

the one hand, new intelligent applications, such as the digi⁃
tal twin and the smart city, emerge with a surging number of 
terminals and explosively increasing data[1], bringing a great 
burden to existing communication systems. At the same 
time, to achieve real-time intelligent decision and control, 
communications are expected to be extremely low-delay and 
reliable. These challenges become more stringent when it 
comes to video data, which accounts for more than 80% of 
Internet traffic[2] and is further rising driven by the demand 
for ultra-high definition (HD) video. For example, a 1 080P 
HD video with 50 frames per second requires a bandwidth of 

60–70 Mbit/s in the advanced H.265 format encoding. As a 
result, existing coding and transmission strategies, aiming at 
transmitting every bit, face the dual challenges of bandwidth 
and delay and are not capable enough of meeting the future 
demands of ultra-low delay and even real-time video trans⁃
mission. It is urgent to develop a more efficient video com⁃
pression and transmission paradigm.

In recent years, the semantic communication driven by arti⁃
ficial intelligence (AI), which is regarded as one of the poten⁃
tial technologies of 6G, has shown great potential due to its su⁃
perior performance in data compression and transmission. 
WEAVER and SHANNON[3] divided the communication prob⁃
lems into three levels, namely the technical problem, semantic 
problem, and effectiveness problem, which corresponds to the 
definition of syntactic, semantic, and pragmatic in the theory 
of signs[4]. Based on the syntactic level of information, existing 
communication systems are developed, aiming at achieving 
complete and correct transmission of every symbol. Differ⁃
ently, semantic communication systems focus on the semantic 
level of information and aim at delivering the goal-related 

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant No. 62293485 and the Fundamental Research 
Funds for the Central Universities under Grant No. 2022RC18.
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parts of messages, which reduces the communication overhead 
to a great extent. Recently, semantic communications have 
been widely studied for the text[5], speech[6], and image[7], and 
demonstrated to be a powerful solution to high-efficiency com⁃
pression and transmission.

For the video, existing source coding methods, like H.264, 
take the numerical difference between pixels as the evaluation 
index of the reconstruction quality, and all pixels are sup⁃
posed to be transmitted completely. When researchers are cop⁃
ing with the phenomenon of lag due to the limited bandwidth, 
the clarity of the reconstructed video often gives place to flu⁃
ency. However, for the human visual perception system, eyes 
tend to be attracted by some specific parts, e.g., the dynamic 
information in the foreground of the picture, and are not very 
sensitive to others like absolute errors between pixels of back⁃
ground. Inspired by this, the trade-off between visual experi⁃
ence and communication overhead can be better achieved in 
video compression and transmission by preserving the informa⁃
tive and significant parts, i.e., semantic information. Some re⁃
searchers have investigated the effectiveness of semantic-
enabled video compression and transmission. LU et al. pro⁃
posed the first semantic compression framework for video, 
named Deep Video Compression (DVC) [8], which implements 
the video compression modules with convolutional neural net⁃
works (CNN) and optimizes them in an end-to-end manner. In 
Ref. [9], the effect of channel transmission is taken into con⁃
sideration by jointly designing the semantic and channel cod⁃
ing for video transmission, and the coding rate of semantic in⁃
formation is determined by the entropy model, which is further 
expanded to frame-level control in Refs. [10] and [11]. Al⁃
though these works provide efficient solutions to channel-
aware semantic transmission, they ignore the change of trans⁃
mission environments and are suboptimal under dynamic 
channel conditions.

To improve the efficiency in semantic communications of 
videos under dynamic channels, this paper proposes a scal⁃
able semantic transmission framework for video (SST-V), 
which achieves adaptive control of the coding rate towards 
dynamic channels. Specifically, a semantic importance esti⁃
mation (SIE) module is proposed to evaluate the importance 
of different semantic features, where the semantic features of 
higher significance are given higher weights in the succes⁃
sive coding. To improve the efficiency and robustness of se⁃
mantic transmission, we design a scalable multi-level joint 
semantic-channel (S-JSC) coding algorithm, where the cod⁃
ing rate of semantic feature is adaptively adjusted according 
to the corresponding importance level and the specific chan⁃
nel condition. In addition, a cascade-learning-based training 
strategy is applied for S-JSC, which greatly reduces the train⁃
ing and storage overhead.

The rest of the paper is as follows. Section 2 summarizes 
the existing video compression standard and semantic trans⁃
mission methods for video. In Section 3, a basic framework for 

SST-V is proposed, including an SIE module and an S-JSC 
coding algorithm. Section 4 gives specific implementation de⁃
tails, simulation results, and performance analysis. Finally, 
Section 5 concludes the paper.
2 Overview of Video Transmission

In this section, we introduce the research status and prog⁃
ress of relevant fields, including existing video compression, 
semantic communication, and semantic transmission of video. 
Meanwhile, some private opinions are given about problems of 
current research and possible directions for improvement.
2.1 Existing Video Compression Coding Method

Relevant standards in the field of video coding are mainly 
formulated by two major organizations: the International Orga⁃
nization for Standardization/the International Electrotechnical 
Commission (IOS/IEC) and the International Telecommunica⁃
tion Union (ITU-T). The Moving Picture Experts Group 
(MPEG) of ISO/IEC has formulated the MPEG series of video 
coding standards for motion image compression. ITU-T has for⁃
mulated the H.26x series of video coding standards, which is 
mainly used for low-bit-rate video telephony. There are also 
some standards that are formulated jointly by IOS/IEC and 
ITU-T, such as H.264/MPEG-4 part10 and H.265/HEVC.

Jaswant. R. JAIN and Anil. K. JAIN proposed a hybrid cod⁃
ing framework based on block motion compensation (MC) and 
transform coding such as discrete cosine transform (DCT) in 
Picture Coding Symposium (PCS) in 1979, which has become 
the main framework of almost all later video coding standards. 
The framework is also known as the MC/DCT hybrid coding. 
The core modules in MC/DCT hybrid coding include predic⁃
tive coding and transform coding. In order to reduce the com⁃
plexity of coding and make the operation of video coding easy 
to execute, each frame is divided into fixed-size blocks first, 
and then the blocks are compressed and encoded. In addition, 
there are quantization, entropy coding, and other modules. For 
example, the H.264 video coding framework is shown in Fig. 1.

In order to reduce the time redundancy among video 
frames, inter-frame prediction and motion compensation are 
usually used. MPEG series compression coding standards di⁃

▲Figure 1. H.264 coding framework[12]
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vide different video frames into intra-frames (I-frame), predic⁃
tive frames (P-frame), and bi-directional interpolated predic⁃
tion frames (B-frame). For different types of frames, different 
compression ratios are used to achieve a balance between com⁃
pression efficiency and video quality. The I-frame is the key 
frame. In the H.264 standard, video frames of fixed length are 
divided into a Group of Pictures (GOP) to prevent error propa⁃
gation among reconstructed frames. The first frame in each 
GOP, as the key frame, is independently compressed by the 
Joint Photographic Experts Group (JPEG) or other image en⁃
coding methods to maximize the preservation of frame informa⁃
tion. The previous I-frame or P-frame is used as a reference 
frame for the subsequent P-frame. Huffman encoding is per⁃
formed on the motion vector, and a higher degree of compres⁃
sion is performed on the residual by using approximate JPEG 
encoding. The B-frame uses the front and back frames for bidi⁃
rectional interpolation prediction, which has the highest de⁃
gree of compression, but the decoding complexity and distor⁃
tion are higher.

However, existing video compression methods have trouble 
dealing with increasing video data and the reasons are as fol⁃
lows. Firstly, existing standards take minimizing pixel error as 
the reconstruction goal and ignore the semantic information 
contained in the video. Secondly, they adopt fixed modular de⁃
signs in which each module is independent of the others, such 
as DCT transform and entropy coding. As a result, they cannot 
obtain an overall performance gain. Benefiting from the devel⁃
opment of deep learning, which has a strong nonlinear charac⁃
terization ability, the latest evolution schemes of mainstream 
coding methods such as H.265, AVS2, and AVS3 have taken 
it into consideration to improve the coding performance.
2.2 Video Semantic Communication

The development of semantic information theory[3, 13–18] has 
supported the rapid growth of semantic communications in re⁃
cent years. Studies on different modalities[19–21] have shown that 
joint source-channel coding can improve the overall perfor⁃
mance of the system, and efficiently handle wireless channel 
fading and interference. Inspired by the joint design, joint 
semantic-channel coding schemes are widely adopted in seman⁃
tic communication systems, which combines the semantic repre⁃
sentation of the source with the link state of the physical layer.
2.2.1 Semantic Compression for Video

Video semantic compression and re⁃
construction can be divided into two cat⁃
egories: optimizing the existing video 
compression framework and extracting 
key information from videos to be com⁃
pressed. The optimization of the existing 
compression framework mainly considers 
the method with a delay constraint, which 
means the reference frame is only from 

previous frames. This makes it more suitable for actual appli⁃
cation scenarios like streaming media. Specific modules in the 
existing video coding framework have been considered to be 
replaced by neural networks (NN). In Ref. [22], the existing 
video compression algorithm based on DCT is combined with 
video frame interpolation based on deep learning. According 
to the threshold of peak signal-to-noise ratio (PSNR), the en⁃
coded data can be selected to provide adjustable compression 
for residuals. In Ref. [23], four kinds of deformation of atten⁃
tion mechanisms are proposed, which respectively use the I-
frame, motion vector, residual error, audio signal, and other 
mode information for video action recognition. Different types 
of information are processed in different ways and compared 
with each other. In 2019, LU et al. proposed an end-to-end 
deep video compression (DVC) model for the first time[8], 
which combines the optimization of video compression mod⁃
ules and uses CNN to optimize the network. The CNN network 
implements an encoder, a decoder, and a motion compensa⁃
tion network and uses a highly nonlinear transformation to rep⁃
resent residuals, which improves compression efficiency. 
Based on DVC, network modules such as feature prediction, 
loop filter, and discriminator[24–28] are added to further im⁃
prove compression performance, making end-to-end video 
compression an important research trend. Multiple frames pre⁃
diction for learned video compression (MLVC) [24] calculates 
relative motion using multiple previous frames, thus reducing 
coding residuals. A deep contextual video compression 
(DCVC) is proposed in Ref. [25], which uses the feature do⁃
main context as a condition and performs conditional coding 
instead of sub-optimal residuals. Considering the similarity of 
spatial dependencies, advanced learned video compression 
(ALVC) [28] predicts the current frame from previous frames 
without consuming any bits, further reducing coding overhead.

For the second category, key semantic features are ex⁃
tracted from original videos. There are relatively mature at⁃
tempts for certain types of data sets. Based on the semantic 
segmentation technology, frames are divided into different se⁃
mantic units, each of which has a specific spatial arrangement 
and visual characteristics, and is coded separately[29]. ZHANG 
et al. extract the semantic features of football video games 
from the elements of foreground, background, and the relation⁃
ship between different objects[30]. The encoded sequences of 

▲Figure 2. Semantic communication systems [17]
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these features are decoded at the receiving end correspond⁃
ingly, and then fused by a U-net network to generate a com⁃
plete video. A semantic video conferencing (SVC) [31] network 
is proposed to extract key points of speakers to realize the se⁃
mantic transmission of the video conference. CHEN et al. pro⁃
pose a framework for Interactive Face Video Coding (IFVC)[32] 
where each talking frame is expressed by highly-independent 
facial features such as mouth motion and eye blinking, achiev⁃
ing superior performance for face videos.
2.2.2 Semantic Transmission for Video

The above works consider video semantic compression 
schemes under the condition of sufficient bandwidth and ideal 
channels. Considering practical communication scenarios, 
new video semantic transmission schemes have been devel⁃
oped to facilitate joint optimization of semantic coding and 
channel coding. To achieve the balance between video quality 
and transmission delay in real-time video transmission sce⁃
narios, CUI et al.[33] use reinforcement learning (RL) to gener⁃
ate inferencing models based on playback and cache informa⁃
tion when network throughput fluctuates. ELGAMAL et al. [34] 
manage to carry out targeted video coding according to spe⁃
cific downstream tasks in edge computing and cloud comput⁃
ing scenarios. They focus on capturing the target object in the 
picture. When the target object has a violent change (e.g., ve⁃
hicle entering or leaving the picture), a new I-frame is se⁃
lected, and only the I-frame is retrieved under specific tasks 
to reduce computing and transmission overhead. For surveil⁃
lance videos[35], only the salient zones are encoded with high 
resolution, therefore the calculation ability of fog nodes can be 
reasonably allocated to obtain low delay while maintaining the 
video quality.

The joint design under specific scenarios considers 
schemes with a fixed rate, and there is still room for perfor⁃
mance improvement for dynamic coding. Therefore, some 
works have studied variable-length semantic coding methods 
for the video to further improve the efficiency of semantic en⁃
coding. In Ref. [36], the resource allocated to different video 
frames is determined by the position in 
GOPs. According to the distance between 
the video frame and the key frame, a hier⁃
archical learned video compression 
(HLVC) method is established with three 
hierarchical quality layers and a recur⁃
rent enhancement network. However, this 
allocation strategy treats the frame as the 
rate control unit and does not go deep 
into the level of semantic features, which 
ignores the importance of different se⁃
mantic information and is difficult to fur⁃
ther compress the content redundancy 
within frames. In Ref. [9], an entropy 
model is used to obtain the rate-adaptive 

transmission strategy, which has several parallel autoencoders 
with a different number of output channel symbols. Although 
the proposed framework achieves adaptive control towards the 
importance of semantic features, which, however, is evaluated 
with a syntactic information entropy, leading to suboptimal 
rate control strategies for semantic coding. In Ref. [29], a se⁃
mantic bit allocation model based on RL is proposed, which 
aims at improving the rate-semantic-sensing performance by 
encoding a certain semantic concept. Different features are 
put into the semantic decoder at different quantization levels 
according to the allocated resources and then reconstruct the 
image. These two works achieve a variable length encoding of 
semantic features, while the bit rates are changed through mul⁃
tiple parallel encoders, which greatly increases the complexity 
of neural network architecture. In Ref. [37], a rate allocation 
network is introduced to analyze the semantic information and 
anti-noise capability of the frame features. Features are coded 
and transmitted in a descending order of semantic importance 
according to the mask generated following the rate allocation 
network, and features with lower importance may be discarded 
to achieve video transmission of different bit rates. The above 
works mainly study variable-length coding schemes with dif⁃
ferent semantic features from the perspective of reconstruc⁃
tion. However, it is still an unsolved problem how to imple⁃
ment a flexible and scalable video semantic transmission 
scheme when the channel dynamically changes.
3 Proposed Framework of Scalable Seman⁃

tic Transmission
In this section, we first present the basic framework of scal⁃

able video semantic transmission, and then introduce the pro⁃
posed SIE module and S-JSC coding algorithm. The cascaded 
training strategy for the proposed system is finally presented.
3.1 Proposed Framework

The total framework of the proposed SST-V is shown in 
Fig. 3. The transmitter consists of a semantic feature extrac⁃

▲Figure 3. Framework of scalable semantic transmission for video
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tion module S (·), a SIE module A(·) and 
a S-JSC encoder E (·). The receiver 
mainly consists of a S-JSC decoder D (·) 
and a semantic synthesis transform T (·). 
The video I = {I1,I2,⋯,IT} is input into 
the semantic feature extraction module by 
frames, while the input image can be ex⁃
pressed as It ∈ RW × H, where W and H are 
the width and height of the images, respec⁃
tively. The semantic feature extraction 
module compares the semantic informa⁃
tion changes between the current image It and the previous reference frame I͂ t - 1 and 
calculates the semantic information re⁃
quired to reconstruct the video s t =
S ( It, It - 1 ) ∈ RN ×MW × MH, where N is the 
number of the semantic features and MW ×
MH is the size of each feature map. The weight of different se⁃
mantic information w t = A(s t ) ∈ RN ×MW × MH is given by SIE. 
The semantic information to be transmitted can be expressed as 
c t = s t × w t. The S-JSC encoder encodes c t as x t = E (c t ) ∈ Cl, 
where l is the number of the transmission symbols, the value of 
which is chosen among the set L = {l1,l2,⋯,lC} according to 
the channel state or different communication demands.

In this paper, we consider both the additive white Gaussian 
noise (AWGN) channel and the Rayleigh fading channel. As for 
the AWGN channel, a received sequence can be expressed as 
y t = x t + n t ∈ Cl. The noise vector n t consists of independent 
and equally distributed cyclic symmetric complex Gaussian ran⁃
dom variables ni which follows ni~CN (0,σ2 ), i = 1,⋯,l, and 
σ2 is the average noise power. For Rayleigh fading channels, 
the single point fading model is considered in this paper and all 
transmission symbols experience the same channel response. 
Clarke Model[38] shows that a flat fading channel is composed of 
several multipath signals under a rich-scattering electromag⁃
netic environment. According to the central limit theorem, both 
the I-path and Q-path of the channel response can be approxi⁃
mated as Gaussian random processes when the number of paths 
is large enough. Similar to Refs. [5] and [7] , the received se⁃
quence can be expressed as y t = htx t + n t ∈ Cl, where 
ht~CN (0,σt

2 ) is a random variable satisfying a cyclic symmet⁃
ric complex Gaussian distribution.

At the receiver side, the received sequence is decoded as ĉ t =
D (y t ) ∈ RN ×MW × MH by the S-JSC decoder, which selects differ⁃
ent decoder structures according to the number of symbols re⁃
ceived. Finally, the decoded sequence of semantic information 
is transmitted to the semantic synthesis transform module to re⁃
construct the original video frame Î t ∈ RW × H = T (c t ).
3.2 Semantic Feature Extraction

The framework of the semantic feature extraction module 
S (·) is shown in Fig. 4, which is referred to the end-to-end 

video compression structure in Ref. [8]. The extracted seman⁃
tic feature s t is mainly obtained from the motion vector (MV) v t and the residual vector (RES) r t.The current frame It and the reference frame I͂ t - 1 are first 
fed into the motion estimation module to get the motion vector 
v t

[39]. A semantic feature map of the motion vector with new 
distribution is obtained in MV SIE and further encoded in an 
MV S-JSC encoder. In particular, the semantic feature map 
needs to pass through a virtual channel at the transmitter and 
then the decoding process is simulated. The decoded semantic 
sequence x͂vt is considered to be approximately consistent with 
the semantic sequence obtained by the receiver. Therefore, 
the semantic synthesis transform module can predict the re⁃
ceived frame from x͂vt and It - 1. By comparing the error be⁃
tween the simulated reconstructed frame I͂ t and the original 
frame It, the residual error vector r t of the current motion vec⁃
tor can be calculated. The encoded motion vector and residual 
vector are spliced together to get the final sequence s t =
{ v t, r t }. Decoded semantic sequence ŝ t after joint semantic 
channel decoder can be divided into decoded motion vector v̂ t and residual error r̂ t correspondingly. The semantic synthesis 
firstly carries out motion estimation based on the previous ref⁃
erence frame Î t - 1 and v̂ t to generate frame IMC - t, followed by 
correction using r̂ t to obtain the final reconstructed frame Î t.
3.3 Semantic Importance Estimation

For video frames, semantic feature vectors indicate what is 
present in each frame and what has changed compared with 
the previous frame. However, it is worth noting that these se⁃
mantic feature vectors have different importance. In the case 
of street surveillance video, we care more about the movement 
of cars and pedestrians that dominate the video than the sway⁃
ing leaves in the wind.

Therefore, we design the SIE module A(·) based on squeeze-
and-excitation networks (SE-Net) shown in Fig. 5. Following 
the semantic features extraction, SIE is firstly used to compre⁃

▲Figure 4. Framework of semantic feature extraction module
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hensively analyze the relationship between different feature 
maps to estimate the importance degree of different features, 
and provide different weights for each feature. Since the se⁃
mantic information s t consists of two parts, SIE estimates the 
semantic importance of v t and r t respectively, and the output 
is w t = { wv t, wr t }. Then, the extracted semantic feature is mul⁃
tiplied by the weights to produce a new feature map. On the 
one hand, more power can be allocated to important informa⁃
tion during an actual communication process to reduce the ef⁃
fect of noise. On the other hand, important semantic informa⁃
tion needs more strict protection by the S-JSC coding algo⁃
rithm explained below. When the channel conditions are se⁃
vere with a low SNR, the correct transmission of important se⁃
mantic features can be guaranteed with the same number of 
channel symbols to realize the reconstruction of basic seman⁃
tic information despite the interference of noise.
3.4 Scalable Joint Semantic-Channel Coding Algorithm

Joint semantic-channel coding is supposed to be used for 
end-to-end overall optimization, which further enhances the 
accuracy of the semantic reconstruction of transmitted videos 
and protects the semantic information obtained in Sections 3.2 
and 3.3. In particular, existing video semantic coding methods 
based on deep learning cannot adjust the code rate flexibly. 
To solve this problem, the S-JSC coding algorithm is designed, 
which can adjust the code rate adaptively according to the ac⁃
tual transmission requirements.

According to the training strategy of cascade learning[40], sev⁃
eral different source channel coding rates are designed. With 
the increase in coding level, the output dimension of the S-JSC 
coding algorithm is continuously reduced while the compres⁃
sion ratio is continuously improved. Higher-level algorithms 
with fewer symbols manage to maintain the maximum transmis⁃
sion quality within limited resources. Instead of indiscrimi⁃
nately compressing the encoding output of the upper level, se⁃
mantic features of different importance obtained from SIE are 
protected with different degrees. The redundancy of semantic 
information with less importance may be decreased greatly to 
realize reliable transmission of the most important information, 
therefore achieving more efficient video semantic transmission.

The coding level is used as the control parameter and input 
into the S-JSC encoder/decoder together with the information 
to be encoded. According to the coding level, the scalable au⁃

toencoder layer specifies the neural network architecture to 
change the dimensions of output. The training and storage 
overhead is greatly reduced with multilevel coding algorithms 
stored in a serial structure, improving the deployment effi⁃
ciency of the model.
3.5 Training Strategy

During the training process, it is of limited significance for 
the subsequent layers to participate in the training before the 
semantic feature extraction module becomes basically stable, 
due to the relatively complex network architecture and the 
large correlation between the front and back layers. Therefore, 
the semantic feature extraction module with relatively stable 
performance can be obtained by separating the training first. 
After it is basically stable, SIE and levels of the S-JSC coding 
algorithm are added successively. Due to the random distribu⁃
tion of parameters of the newly added layer, the semantic fea⁃
ture extraction module is frozen, which makes the subsequent 
structure converge quickly. When lower levels of S-JSC are 
trained, there are epochs where all preceding components are 
updated to achieve an end-to-end gain.

With the gradual addition of the new JSC coding layer, the pa⁃
rameters of the trained S-JSC coding layers and SIE will also be 
frozen to ensure that the output of the lower coding level is not 
damaged as much as possible during the training of the higher 
coding level. The update of parameters will not be carried out in 
the back propagation, and only the new coding layers will be 
trained. SIE and the low-level S-JSC encoder layers get the over⁃
all gain through the joint training, which improves the anti-
interference ability from the perspective of semantic information 
protection. The high-level S-JSC coding layers mainly further re⁃
duce the transmission symbol error rate from the perspective of 
transmission under insufficient channel carrying capacity.
4 Experiments and Results

In this section, we present the details of training, including 
data set processing, optimization objectives, and evaluation in⁃
dicators. Simulation results are analyzed, which proves the ef⁃

▲Figure 5. Semantic importance estimation (SIE) module structure
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fectiveness of the proposed framework.
4.1 Datasets

The proposed system is trained with the Vimeo-90k data⁃
set[41], which is one of the most commonly used video datasets 
built for evaluating different video processing tasks. The com⁃
plete dataset is about 82 G in size, and according to Ref. [8], it 
would take about 7 days to train a single similar semantic fea⁃
ture extraction module using two Titan X GPUs. The dataset 
contains 89 800 independent short films, each of which consists 
of 7 frames. During each epoch, according to the time relativity, 
the relative motion for each frame with respect to its reference 
frame is considered to be approximate and the coding strategy 
is therefore similar among the 7 frames of each video clip. Only 
one frame of each video is selected randomly for our training, to⁃
gether with the previous frame as references. Compared with 
training each group of the frame and its reference frame, the vol⁃
ume of training details decreases to 1/6 of the original volume, 
which greatly reduces the time cost while the performance in 
subsequent validation is basically unchanged.
4.2 Optimization Objective and Metrics

The optimization objective of SST-V is to improve the video 
reconstruction performance with fewer channel symbols. The 
entropy of preliminary semantic information st from the seman⁃
tic feature extraction module is supposed to decrease and 
therefore reduce the difficulty of subsequent module coding. 
Therefore, the rate-distortion (RD) function is adopted as the 
loss function, i.e.,

loss = λlD + lR = λd ( xt,x̂t ) + ( H ( vt ) + H ( rt ) ), (1)
where λ is the Lagrange multiplier that represents the tradeoff 
between bit overhead and video distortion, lR is the coding bit 
rate of the semantic feature extraction module, represented by 
entropies of the moving vector v t and the residual vector r t, and lD is the distortion constraint of video reconstruction qual⁃
ity that consists of mean square error (MSE) of the original 
video frame. Since the reconstruction process includes both 
motion compensation using motion vector and correction using 
residual vector, we need to minimize the errors after motion 
compensation lmc and the overall distortion after reconstruc⁃
tion lre, i.e.,

ld = lmc + lre =
w*MSE( IMC - t, It ) + MSE( It, Î t ), (2)

where w is weight of the distortion of motion-vector-based re⁃
construction that decreases with the training process.

PSNR and multi-scale structural similarity index (MS-
SSIM) are used to measure the distortion degree of recon⁃
structed frames. PSNR is calculated as:

PSNR = 10 log10 (MAX2 /MSE) , (3)

where MSE is the mean square error of the reconstructed im⁃
age and original image, and MAX represents the maximum 
pixel value possible for a frame and is set as 1 during the ex⁃
periment. Compared with PSNR, MS-SSIM is closer to the real 
perception of human eyes that ranges from 0 to 1, where a 
higher value indicates lower distortion. It considers that visual 
distortion is composed of brightness, contrast and structure, 
and the influence of the distance from the viewer to the image 
and the density of pixel information on subjective visual expe⁃
rience are further considered. The detailed calculation of MS-
SSIM can be found in Refs. [42] and [43].

Similar to k/n in Ref. [21], channel symbols per pixel (CPP) 
is defined to measure the coding rate of the system. For a fixed 
resolution W × H, the number of channel input symbols is R, 
and then CPP is calculated as:

CPP = R/ (W × H ). (4)
4.3 Simulation Results

We set up three coding levels, namely Level 1, Level 2, and 
Level 3, and the value of CPP is 0.110, 0.055, and 0.014, re⁃
spectively. The ideal channel environment is first considered, 
where the channel capacity is assumed to always be enough to 
serve the transmission of all the channel input symbols. Fig. 7 
shows the reconstruction performance of the schemes with and 
without SIE under different coding levels. “SIE-L1” indicates 
the scheme at Level 1 with SIE, while “L1” means the scheme 
without SIE.

Since most values of MS-SSIM are distributed densely, we 
will use both raw values and the form of n dB for better visual 
effect, which is calculated by

MS - SSIM(dB) = -10log10 (1 - MS - SSIM). (5)
Under different channel conditions and metrics, the two 

curves at the top are both the results of schemes with SIE, 
which achieve higher performance gain under the metric of 
MS-SSIM. Note that benefitting from SIE, the scheme at Level 
2 performs even better than the non-SIE scheme at Level 1 in 
most cases. Therefore, SIE helps greatly in extracting impor⁃
tant semantic information from the source video, reducing the 
communication cost significantly. The advantage of SIE is also 
shown in Fig. 8, which gives several visual results of the 
schemes with or without SIE at 0 dB with Level 3 under the 
ideal channel.

However, in the practical communication system, the chan⁃
nel capacity is not always sufficient and deteriorates severely 
under bad channel conditions. Hence, the proposed schemes 
are also evaluated under capacity-limited cases. During the 
test process, we make SNR vary uniformly from 0 dB to 10 dB. 
The average PSNR and MS-SSIM of different schemes are 
shown in Table 1, where schemes 1 and 2 perform better than 
schemes 3 and 4 under non-ideal channels, respectively, 
which further demonstrates the effectiveness of the proposed 
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SIE. Scheme 3 performs worse than scheme 4 even if the for⁃
mer uses more symbols for transmission. The reason is that all 
the semantic information is transmitted without considering 
the variation of channel capacity and the important informa⁃
tion is deteriorated with higher probability, exposing the limi⁃
tation of the fixed level coding scheme.

For the proposed scalable multilevel coding scheme, the 
coding level increases for lower SNR. Level 3, Level 2 and 
Level 1 are selected respectively for channel conditions rang⁃
ing in [ 0,3), [ 3,6) and [ 6,10 ]. The number of three levels is 
assumed to be the maximum number of symbols that can be 
accurately transmitted under the corresponding channel condi⁃
tions. For the proposed SST-V, each frame can automatically 

switch to a different coding model accord⁃
ing to the SNR, while the non-scalable 
baselines (schemes 1, 2, 3 and 4) use a 
fixed encoding level at all SNRs.

As shown in Table 1, compared with 
schemes 3 and 4, the proposed SST-V 
with both SIE and S-JSC, i.e., scheme 6, 
achieves performance gains of 2.3 dB 
and 4.6 dB in terms of PSNR and MS-
SSIM, respectively. It shows that when 
the channel capacity is limited, the SST-
V can adapt to the dynamic channel en⁃
vironment, significantly improving the 
transmission efficiency. Note that 
schemes 5 and 6 further evaluate the ef⁃
fectiveness of SIE under the scalable 
multilevel coding rate. With the pro⁃
posed SIE, scheme 6 achieves gains of 
1.3 dB in PSNR and 2.7 dB in MS-
SSIM. It proves that SIE helps the SST-
V focus on the semantic information of 
higher importance, and hence improves 
the reconstruction performance under 
practical dynamic channels.

5 Conclusions
In this paper, we discuss the video transmission problem in 

the future 6G mobile communication scenarios and review the 
existing video coding and semantic-based video coding trans⁃
mission methods. To achieve efficient and robust video trans⁃
mission under dynamic channel conditions, this paper pro⁃
poses a scalable semantic transmission framework for video, 
namely SST-V. Besides semantic information extraction, SST-
V estimates the importance of different semantic features with 
the proposed SIE, and obtains a more compact and robust rep⁃

▼Table 1. PSNR and MS-SSIM of different schemes
Number

1

2

3

4

5

6 (SST-V)

Scheme

Without SIE, fixed Level 1 (L1)

Without SIE, fixed Level 2 (L2)

With SIE, fixed Level 1 (SIE-L1)

With SIE, fixed Level 2 (SIE-L2)

Scalable multilevel coding without SIE

Scalable multilevel coding with SIE

PSNR

23.937 6

27.307 8

26.099 3

28.900 34

29.935 9

31.190 78

MS-SSIM/dB

6.704 7

8.743 6

7.454 1

9.754 9

11.682 3

14.349 9
MS-SSIM： multi-scale structural similarity index
PSNR： peak signal-to-noise ratio
SIE： semantic importance estimation
SST-V： scalable semantic transmission framework for video

▲Figure 8. Examples of the reconstructed frames of the schemes with 
or without semantic importance estimation (SIE)

Original frame

Reconstructed frame 
with importance

Reconstructed frame 
without importance

AWGN: additive white Gaussian noise
MS-SSIM: multi-scale structural similarity index
PSNR: peak signal to noise ratio

SIE: semantic importance estimation
SNR: signal-to-noise ratio

▲Figure 7. Reconstruction performance of the schemes with or without SIE at different coding levels

(a) PSNR under AWGN channel (b) MS-SSIM under AWGN channel

(c) PSNR under Rayleigh fading channel (d) MS-SSIM under Rayleigh fading channel
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resentation of semantic information. An S-JSC coding algo⁃
rithm based on cascading learning is designed, where the cod⁃
ing rate can be adjusted adaptively according to dynamic 
channel states. The simulation results show that SST-V has 
better video reconstruction performance in terms of PSNR and 
MS-SSIM compared with the baseline schemes, and provides a 
more efficient solution to video transmission under bandwidth 
constraints.
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Abstract: In a rechargeable wireless sensor network, utilizing the unmanned aerial vehicle (UAV) as a mobile base station (BS) to charge sen⁃
sors and collect data effectively prolongs the network’s lifetime. In this paper, we jointly optimize the UAV’s flight trajectory and the sensor 
selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network (WSN) during finite UAV’s 
flight time, while ensuring the energy required for each sensor by wireless power transfer (WPT). We consider a practical scenario, where the 
UAV has no prior knowledge of sensor locations. The UAV performs autonomous navigation based on the status information obtained within 
the coverage area, which is modeled as a Markov decision process (MDP). The deep Q-network (DQN) is employed to execute the navigation 
based on the UAV position, the battery level state, channel conditions and current data traffic of sensors within the UAV’s coverage area. Our 
simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and 
trajectory design.
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1 Introduction

Wireless sensor networks (WSNs) have been widely 
used in various scenarios, like environment moni⁃
toring[1]. However, the energy of the sensors in WSN 
is usually limited and recharging sensors is chal⁃

lenging[2]. When a WSN is deployed in remote areas, it is not re⁃
alistic for traditional terrestrial communication networks to 
charge sensors. In this situation, unmanned aerial vehicles 
(UAVs) can be used to charge ground sensors and complete 
tasks such as traffic monitoring, autonomous driving comple⁃
ment, flying relay and data collection[3–6]. In addition, various 
types of natural disasters, such as earthquakes, wildfires, hurri⁃
canes, etc., have caused serious damage to communication in⁃
frastructure. UAVs as mobile stations can help quickly estab⁃
lish emergency communication and maintain real-time commu⁃
nication to obtain post-disaster situational awareness, which 
can significantly improve the efficiency of rescue missions.

The UAV is used as a mobile access point (AP) to charge a 
set of sensors via wireless power transfer (WPT) in the down⁃
link, and the ground sensors leverage the harvested energy to 
transmit data back to the UAV via wireless information trans⁃
fer (WIT) in the uplink[7]. However, the resource allocation 
problem in this scenario is non-convex and difficult to solve 
directly. Therefore, we formulate the problem as a Markov de⁃
cision process (MDP), which will be optimally solved with a 
deep reinforcement learning (DRL) approach[8].

The deep Q-network (DQN) framework has been widely ap⁃
plied in UAV-assisted wireless communication systems. In 
Ref. [9], the authors investigated UAV-assisted WPT and data 
collection and employed the DQN to optimize the UAV’s in⁃
stantaneous patrolling velocity as well as plan the flight trajec⁃
tory, in order to minimize the packet loss. TANG et al. [10] de⁃
signed a DRL strategy for maximizing the minimum through⁃
put, where the sparse reward was used to ensure that the UAV 
could complete the optimization task. In Ref. [11], the authors 
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proposed to dynamically adjust the flying trajectory of the 
UAV based on the changes of point of interest (PoI) in the 
coverage range of the UAV, in order to cover as many PoIs as 
possible, and to improve the fairness of ground users. In Ref. 
[12], the authors investigated UAV-aided mobile networks, 
where multiple ground mobile users (GMUs) desired to up⁃
load data to a UAV, and maximized the uplink throughput by 
optimizing the UAV’s trajectory. ABEDIN et al. [13] designed 
a navigation policy for multi-UAVs to improve the data fresh⁃
ness and connectivity to the Internet of Things (IoT) devices, 
which incorporated different contextual information such as 
energy and age of information (AoI) constraints. In Ref. [14], 
the authors investigated a UAV-based emergency communi⁃
cation network, in which UAVs could collect information 
from ground users in post-disaster scenarios, and trans⁃
formed the problem into a constrained Markov decision-
making process (CMDP). LI et al. [15] formulated a joint opti⁃
mization of flight cruise control and data collection schedule 
to minimize network data loss as a partially observable Mar⁃
kov decision process (POMDP), where the states of indi⁃
vidual IoT nodes could be obscure to the UAV.

However, the above-mentioned works are all based on the 
condition that the UAV has partial or full prior knowledge of 
the environment or waypoints. Investigation into UAVs’ navi⁃
gation with no prior knowledge of sensors’ location is still a 
blank in the literature. Therefore, motivated to fill this gap, 
we study the UAV navigation problem under the assumption 
of no prior knowledge about sensor positions on the UAV 
side. To complete the autonomous navigation task, which is 
difficult to solve by convex optimization, we propose a novel 
DRL-based framework to optimize the UAV’s trajectory as 
well as the ground sensors selection with the objective of 
maximizing the average data traffic of all sensors in a UAV-
assisted WSN. The problem is formulated as MDP with a 
large state and action space. To obtain the up-to-date knowl⁃
edge about the state information of ground sensors, DRL is 
used for the UAV to autonomously navigate to the next posi⁃
tion. Numerical results show that the proposed algorithm sig⁃
nificantly improves the network performance while ensuring 
the UAV trajectory is optimized.

The rest of this paper is organized as follows. In Section 2, 
we describe the system model and problem formulation. The 
DRL-aided algorithm for UAV-assisted networks is presented 
in Section 3. Section 4 shows the simulation results of the pro⁃
posed algorithms. Finally, the conclusion of this paper is pre⁃
sented in Section 5.
2 System Model and Problem Formulation

2.1 System Model
We consider a single-UAV-assisted WSN consisting of K 

sensors shown in Fig. 1, where the UAV is responsible for 
charging and collecting data, and the ground sensors harvest 

energy from the UAV in the downlink and then send collected 
data in the uplink. Without loss of generality, we assume that 
the flying height of the UAV is fixed at H m. The UAV has a 
coverage range of R m2, i. e., only sensors with a distance of 
less than R from the UAV can communicate with the UAV. 
The UAV starts from the origin and flies back to it within the 
specified flight time. The notations used in this paper are sum⁃
marized in Table 1.

In actual scenarios, the UAV has no prior knowledge of the 
location and status of sensors. Therefore, how the UAV per⁃
forms autonomous navigation also becomes a problem to be 
solved in our paper. Given the flight height, the UAV coverage 
area R can be expressed as:

R = π (h tan ϕ
2 ) 2

, (1)
where ϕ denotes the antenna beam width, and only the sen⁃
sors in the coverage area can communicate with the UAV.

At any time slot, the UAV has three operation modes: the 
uplink data collection (DC) mode, the downlink WPT mode 
and the state listening mode. We employ ρk( t) ∈ (0,1), 
∀k ∈ K to denote the UAV operational mode selection at the 

▼Table 1. Notation list
Notation

k, K
t, T
τ, T
wk

vUAV( t)
q ( t)
dk( t)
hk( t)

R

P̄k( t)
ρk( t)

PUAV, Ps

Definition
Sensor index, number of ground sensors

Time slot index, total UAV flight time slots
Time slot duration, total UAV flight time

Coordinate of the k-th sensor
Velocity of the UAV at the t-th time slot
Position of the UAV at the t-th time slot
Distance between sensor k and the UAV

Channel gain between sensor k and the UAV
The coverage range of the UAV
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▲Figure 1. A UAV-assisted rechargeable wireless sensor network (WSN)
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time slot t. In the uplink DC mode, we have ρk( t) = 1, and 
sensor k is selected to send its data to the UAV by consuming 
its energy storage. In order to avoid mutual interference, only 
a single sensor is allowed to send data to the UAV, which 
yields ∑k = 0

K ρk( t) = 1. In contrast, in the downlink WPT 
mode, we have ρk( t) = 0, and the UAV will charge the ground 
sensors within the coverage area R. These sensors may harvest 
energy from the downlink radio frequency (RF) signals of the 
UAV to replenish their energy storage. In the state listening 
mode, the UAV obtains the status information of the sensors 
within its coverage area through its beacons, thus making a 
partial observation of the UAV. The state information includes 
the sensor’s battery level, data traffic, and instantaneous 
channel conditions. This state information is then used to ex⁃
ecute the actions of the UAV. Note that, since the state listen⁃
ing mode occupies a much shorter time duration compared 
with the other two operation modes, it can be reasonably omit⁃
ted from the mode selection of the UAV.

Note that the UAV can only obtain state information for sen⁃
sors within their coverage area R, therefore, the UAV must au⁃
tonomously navigate to the vicinity of all sensors without fully 
knowing their locations and should cover as many sensors as 
possible based on local observations.

Fig. 2 illustrates the operation modes of the UAV over five 
consecutive time slots. In the time slots t1 and t3, the UAV op⁃
erates in a downlink WPT mode. Since only sensors 1, 3, and 
k are in their coverage area, they may harvest energy from the 
UAV’s downlink WPT signal. In the t2, t4 and t5, the UAV op⁃
erates in an uplink DC mode, while sensors 3, 1 and k upload 
data to the UAV, respectively.
2.2 Problem Formulation

The locations of sensor k and the UAV at time slot t are de⁃
noted as wk = ( xk,yk ) and q ( t) = ( x ( t) ,y ( t) ), respectively. 
Accordingly, the distance from the UAV to sensor k is given by

dk( t) =  q ( )t - wk

2 + H 2 , (2)
where  ·  denotes the Euclidean norm of a vector.

The UAV communicates with sensors via the line-of-sight 
(LoS) communication links. The channel power gain between 
the UAV and sensor k at time slot t is given by:

hk( t) = β0d-2
k ( t) = β0

 q ( )t - wk

2 + H 2 ,∀k ∈ K,
(3)

where β0 denotes the channel power gain at a reference dis⁃
tance of 1 m.

First, we consider the WPT mode, where ρk( t) = 0. Let 
PUAV denote the transmit power of the UAV, while all the K 
sensors have the same transmit power of Ps. Accordingly, at 
time slot t, the energy harvested by sensor k can be ex⁃
pressed as:

P̂k( t) = (1 - ρk( t) )ηPUAV hk( t) τ = ( )1 - ρk( )t ηβ0 PUAV
 q ( )t - wk

2 + H 2 τ,
(4)

where 0 < η ≤ 1 denotes the RF-to-direct current energy con⁃
version efficiency.

Then, in the DC mode, we have ρk( t) = 1. The achievable 
uplink throughput of sensor k in bits per second can be ex⁃
pressed as:

r̂k( t) = ρk( t) B log2(1 + Pshk( )t
σ2 ) =

ρk( t) B log2(1 + Pshk( )t
 q ( )t - wk + h2 ) , (5)

where σ2 is the noise power, and λ ≜ β0 σ2 is the reference 
signal-to-noise ratio (SNR). Thus, the total number of data 
rk( t) collected from sensor k at the end of the time slot t is 
given by:

rk( t) = rk( t - 1) + r̂k( t) τ, (6)
where we reasonably assume rk(0) = 0. By jointly considering 

energy harvesting and energy consumption at the 
time slot t, the remaining energy on sensor k is 
given by

Pk( t) = Pk( t - 1) + P̂k( t) - Psτ ≥ 0, for ∀k. (7)
Appropriate actions {α ( t) ,vUAV( t) , ρk( t)} must 

be carefully chosen for the UAV to ensure that the 
energy consumption of sensor k should not exceed 
the energy stored, which constitutes the energy 
causality constraint on all sensors of Eq. (7).

For simplicity, in the state listening mode, sen⁃
sor k may report its energy state to the UAV in the ▲Figure 2. Communication protocol for a UAV-assisted wireless sensor network
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t
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︙
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︙
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form of a single binary bit. Therefore, the energy state informa⁃
tion of sensor k is quantified as:

P̄k( t) = ì
í
î

ïï1, if  Pk( )t ≥ Psτ

0, if  Pk( )t < Psτ. (8)
Since the flight time is stipulated, we need to predict 

whether the UAV can fly back to the origin within the speci⁃
fied time at the current position. Accordingly, we express the 
judgment basis as:

∑t' = 1
t vUAV( )t'

t (T - t) ≥  q ( )t + 1 - q ( )0 2 , (9)

where ∑t' = 1
t vUAV( )t'

t  represents the UAV’s average flying ve⁃
locity so far. Additionally, q ( t + 1) represents the next posi⁃
tion obtained by the UAV according to the DQN algorithm 
that will be introduced in Section 3.

Our objective is to maximize the average data traffic of all 
sensors during a finite flight time. Therefore, the data traffic op⁃
timization problem can be mathematically formulated as follows:

(P1) : max
{ }q ( )t , ( )vUAV ,ρk( )t

∑k = 0
K rk( )T

K , (10)
s. t.  ρk( t) = {0,1},∀k ∈ K, (10a)

∑
k = 0

K

ρk( )t = 1,∀t ∈ T, (10b)
Pk( t) - PsTDC ≥ 0,∀k ∈ K, (10c)
rk(T ) ≥ rQoS,∀k ∈ K, (10d)
Eqs. (7) and (9).
In addition to the flight Constraints (9) and (10c), the oper⁃

ating mode Constraints (10a) and (10b) and the energy causal⁃
ity Constraint (7), we also need to guarantee that the average 
data collection of all sensors should be above 
the minimum quality of service (QoS) require⁃
ment rQoS, as expressed in Constraint (10d).
3 Deep Reinforcement Learning 

for UAV-Assisted Power Trans⁃
fer and Data Collection
Due to the non-convex optimization problem 

and the large action space, in this section, we 
employ a DQN-based algorithm to solve Prob⁃
lem (P1). The UAV will periodically select the 
best action based on the network status while 
maximizing the average data traffic.

3.1 Deep Q-Network
We first provide a brief review of the DQN framework. The 

DQN approach can be described as a MDP, which is defined by 
a 4-tuple S,A,R,P , where S is the set of states, A is the set 
of all possible actions, R represents the reward when an action 
is taken, and P denotes the transition probability from one state 
to another. The DQN structure is illustrated in Fig. 3, where the 
agent observes the environment, obtains the state st ∈ S, 
chooses an action at ∈ A, and then receives a reward rt ∈ R 
according the observation and the next state.

The DQN obtains an optimal policy π by maximizing the 
long-term expected accumulated rewards. The expected accu⁃
mulated reward for each state-action pair is defined as:

Q ( st,at ) = E é

ë
ê
êê
ê∑

t = 1

T

γt - 1rt| st,at
ù

û
ú
úú
ú , (11)

where γ ∈ [0,1] is the discounted factor. Then, we can get the 
optimal policy: π ( st ) = arg max

at

Q ( st,at ). By selecting the op⁃
timal action a∗, we have the optimal action-value function:

Q∗( st,a∗
t ) = (1 - ϖ )Q∗( st,a∗

t ) +
ϖ

é

ë

ê
êê
êr ( st,a∗

t ) + γ max Q ( )st,at
at ∈ A

ù

û

ú
úú
ú , (12)

where ϖ ∈ (0,1] is the learning rate. A DQN uses a deep neu⁃
ral network (DNN) as the approximator of the Q (·) function 
and is trained by minimizing the following loss function:

L (θ ) = E [ yt - Q ( st,at| θ ) 2 ] , (13)
where θQ is the weight vector of the DQN, and yt is the target 
value, which is denoted by:

yt = rt + γ max
at

Q̂ ( s',a' ; θ-) . (14)
In conventional Q-learning, the Q-value is updated by both 

the return at the current slot and the value estimated at the 

▲Figure 3. Schematics of the proposed algorithm
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next slot. Due to the instability of the training samples, some 
fluctuations may occur in each iteration, which will be imme⁃
diately reflected in the next iteration. In order to reduce the 
impact of related issues, it is necessary to decouple the two 
parts as much as possible. Therefore, the DQN introduces a 
dual neural network and replay buffer mechanism. It uses an⁃
other network to generate the target Q-value, which is used to 
calculate the evaluated network and loss function. After M it⁃
erations, the parameters of the evaluated network will be cop⁃
ied to the target network. The model for calculating the target 
value will be fixed for a period of time, hence reducing the 
volatility of the model. In addition, a replay buffer is applied 
to store the transition samples ( s,a,r,s') that are generated in 
each iteration.
3.2 DQN-Based Solution

In the DQN algorithm we used, the UAV implements the 
ground sensor selection and operation mode selection, and cal⁃
culates the next location and flying speed. Each action depends 
on the network state. Let us explain the definition of state 
space, action space and reward function of the UAV in our pro⁃
posed DQN-based algorithm, as summarized in Algorithm 1.
Algorithm 1: DQN-based algorithm
1: Initialize replay memory D to capacity N;
2: Initialize action-value function Q with random weights θ;
3: Initialize action-value function Q̂ with random weights θ- = θ;
4: for episode = 1, M, do
5:       Start state st → s1 and accordingly update θ;
6:       for t = 1,⋯,T do
7:            Execute action at in an emulator and observe reward 

rt and the next state st + 1;8:            Store transition ( st,at,rt,st + 1 ) in D;
9:            Sample M random minibatch of transitions 

( sj,aj,rj,sj + 1 ), j = 1,⋯, M from D;
10:           Calculate yj according to Eq. (14);
11:           Calculate the MSE loss function 1

M∑j = 1
M ( yj -

Q ( sj,aj ; θ ) ) 2 and update the network parameters θ;
12:            Update ( x ( t + 1) ,y ( t + 1) );
13:            Every δ steps reset Q̂ = Q;
14:     end for
15: end for

1) The UAV obtains the status information of the sensors in 
the coverage area through autonomous navigation. The state S 
of the network at the time slot t contains four parts:

• P̄k( t) | k ∈ K ( )t : the battery level of the sensors within the 
coverage area;

• rk( t) | k ∈ K ( )t : the current data traffic of all sensors, 
where K ( t) = {k | dk( )t ≤ R}, indicates the sensors within the 

coverage area R of UAV;
• q ( t): the UAV location;
• hk( t) | k ∈ K ( )t : the channel gain between the UAV and 

the sensors within the coverage area.
2) The steering angle αt of the UAV is assumed to be se⁃

lected from D directions in the angular domain. The action A 
contains four parts:

• k: the ground sensor selection, where k ∈ K ( t);
• ρk( t): the operation mode selection, by which the UAV 

chooses to charge or receive data, where ρk( t) ∈ {0,1};
• α ( t): the steering angle;
• vUAV( t): the next flying speed.
As it can be seen from the above, the action space A has a 

cardinality of 3 ⋅ K ⋅ D, where 3 represents that the flying 
speed of the UAV can have three values. Thus we can get the 
next location of the UAV:

ì
í
î

ïï
ïï

x ( )t + 1 = x ( )t + vUAV cos α ( )t ,
y ( )t + 1 = y ( )t + vUAV sin α ( )t . (15)

3) The reward R: since our objective is to maximize the av⁃
erage data traffic while ensuring that the battery level P̄k( t) is 
not lower than 1, our reward function consists of two parts:

• rdata( t) is the change of the average data traffic of all sen⁃
sors after selecting an action:

rdata( t) = Δ∑k = 1
K rk( )t

K . (16)
• rpenalty( t) is an action penalty when none of the constraints 

in (P1) is satisfied.
To summarize, we give the final reward function:
r ( t) = rdata( t) + rpenalty( t) . (17)

4 Simulation Results
In this section, we present network configurations and illus⁃

trate numerical results including the trajectory of the UAV, en⁃
ergy, battery level and data traffic of all sensors to validate the 
proposed DQN-based algorithm. Our experiments are per⁃
formed on Tensorflow 1.11.0 (the symbolic math library for nu⁃
merical computation) and Python 3.6.
4.1 Experiments Settings

As it is shown in Tables 2 and 3, we assume that K =10 
sensors are uniformly distributed within a 200 × 200 m2 dis⁃
trict in our environments. The time-slot duration is fixed at 
t = 1 s. The transmit power of the UAV and ground sensors 
are PUAV = 30 dBm and Ps = 0 dBm, respectively. The chan⁃
nel power gain at the reference distance d0 = 1 m is set as β0 =
-30 dB. The QoS requirement is set as 0 bit/s. And we set 
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rpenalty as 0.01 when a constraint is not satisfied.
4.2 Performance Evaluation

The optimized trajectory of the UAV within different speci⁃
fied flight time is shown in Fig. 4. The red dots represent 10 
sensors, and the asterisks indicate the start and end of the 
UAV. The black trajectories represent the UAV trajectories 
obtained by DQN. We assume that when the distance between 
the UAV and the origin is less than 10 m and all sensors sat⁃
isfy the QoS requirement, the episode is ended. It can be ob⁃
served that the UAV can complete autonomous navigation 
tasks and adjust its trajectory either to transfer energy or col⁃
lect data. As it can be seen from Fig. 4, the UAV needs to 
cover as many sensors as possible for charging in order to re⁃
ceive data later, so the UAV will not fly straightly over a spe⁃
cific UAV. Similarly, we can see from Figs. 4(a) and 4(b) that 
when the flight time increases, the UAV’s flight trajectory is 
closer to the sensor.

Furthermore, we compare the situation of the UAV flying 
along the preset circular trajectory with the same start points. 
As shown in the colored trajectories in Fig. 4(a), the UAV will 
fly at a constant speed along circular trajectories with the ra⁃
dius of 75 m, 100 m, and 125 m respectively. At this time, the 
action of the UAV will only include the selection of the opera⁃
tion mode and the specific sensor, namely at = {k, ρk( t)}.

We then investigate the DQN-based algorithm performance 
by analyzing the battery and data traffic of sensors. Figs. 5(a) 
and 5(b) respectively show the energy and data traffic of the 
first, fifth and tenth sensors, where a training step is equiva⁃
lent to the time slot duration. The rising part of the curve in 
Fig. 5(a) indicates that the corresponding sensor is being 
charged, which corresponds to the level part of the curve in 

Fig. 5(b). In contrast, the falling part of Fig. 5(a) indicates that 
the sensor k transmits data to the UAV, which also corre⁃
sponds to the rising curve in Fig. 5(b).

For the purpose of testing the performance of the algo⁃
rithm, we then simulate the scene with different sensor num⁃
bers and different flight time by DQN and three circular tra⁃
jectories with different radii in Fig. 6. It can be seen from 
Fig. 6(a) that when the flight time of UAV increases, the av⁃
erage data traffic on the sensor increases. This is because 
the flight time increases, and the UAV will have more time 
to receive data from the sensors. And it can be seen that the 
performance obtained by the DQN algorithm is the best, fol⁃
lowed by the circular trajectory with r = 100 m, and the cir⁃
cular trajectory with r = 125 m is the worst. Because the 
DQN algorithm can choose the speed and the next position 
of the UAV, it can hover around the sensor more. The circu⁃

▼Table 2. Simulation parameters: DNN
DNN Parameters

Learning rate
Discount factor

Replay memory size
Batch size

ReLu hidden neurons
Number of neural network layers

Value
0.000 1

0.9
10 000

32
20
2

DNN： deep neural network

DQN: deep Q-network     UAV: unmanned aerial vehicle

(a)

(b)

▲ Figure 4. UAV’s trajectory under different flight time: (a) 2 000 s 
and (b) 4 000 s
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▼Table 3. System parameters 
System Parameters

Bandwidth
Energy conversion efficiency

Noise power
Flying height
Coverage area

Steering angle (α ( t) )
Flying velocity ( vUAV( t) )

Value
1 MHz

0.9
−60 dBm

10 m
70 m2

{ k
4 π | k = 0,⋯,7}
{0,5,10} m/s
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lar trajectory with r = 100 m is the closest to the sensor 
among all circular trajectories shown in Fig. 4(a), so the av⁃
erage data traffic obtained is the largest among the three cir⁃
cular trajectories.

Fig. 6(b) shows that under the same flight time, the fewer 
the number of sensors, the more the UAV will choose to per⁃
form the data collection mode, which results in higher average 
data traffic. After the number of sensors increases to 16, the 
average data traffic per sensor by DQN becomes stabilized. 
This is because the total distribution area of the sensors and 
the coverage of the UAV remains unchanged. When the num⁃
ber of sensors increases, the distribution of sensors will be 
denser, and the UAV can charge more sensors with the same 
coverage and the same charging time. Additionally, it can be 
observed from Fig. 6(b) that the number of sensors does not 

have much impact on the circular trajectories, since the UAV 
always flies at a constant speed. There is no situation where 
the UAV has a higher probability of hovering over certain sen⁃
sors when the number of sensors is small. This shows that the 
DQN algorithm is more suitable for sparsely distributed and 
nonuniform networks.
5 Conclusions

In this paper, we formulate the problem of power transfer 
and data collection in a UAV-assisted WSN, while ensuring 
autonomous navigation of the UAV. We then propose a DQN-
based algorithm to solve the problem in order to maximize the 
average data traffic. Given the states of the battery level, the 
current data traffic of all sensors, the position of the UAV, and 
channel conditions, the UAV takes actions according to the 

(a)

(b)

▲Figure 5. Energy and data traffic of k=1.5 and 10 ground sensors: (a) 
battery and (b) data traffic

(a) Different flight time when the number of sensors is all 10

(b) Different number of sensors when the flight time is all 1 000 s
DQN: deep Q-network

▲Figure 6. Comparison of average data traffic per sensor by DQN and 
three circular trajectories
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proposed DQN-based algorithm. Numerical results illustrate 
that the proposed algorithm significantly improves the network 
performance. However, the proposed algorithm also has high 
complexity. Due to the real-time interaction with the environ⁃
ment, the UAV needs significant energy consumption, which 
can be solved by the digital twin network.
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1 IntroductionIn recent years, the importance of the Terahertz (THz) spec⁃
trum in electronics, radio astronomy and other fields, such 
as biological imaging, high-speed communication, and 
high-resolution radar, has gradually emerged mainly due 

to its spectral resolution safety, perspective and broadband 
characteristics[1]. However, due to the large loss of free space 
propagation in the THz frequency band (especially when fre⁃
quencies are above 100 GHz), combined with the effects of at⁃
mospheric attenuation, a transmitter needs to have sufficient 
effective isotropic radiated power (EIRP) to achieve long-
distance wireless transmission. Fig. 1 shows a block diagram 
of a typical THz transmitter based on a communication appli⁃
cation scenario. The power amplifier (PA), as the final active 
stage of the transmitter, directly drives the post-antenna to 
transmit the radio frequency (RF) signal into free space. 
Therefore, its performance indicators, including output power, 
RF bandwidth, etc., directly determine the performance of the 
entire transmitter and then restrict the wireless transmission 
distance of the entire transceiver system.

The III-V compound semiconductor processes are often 
used in THz PA designs due to their higher cutoff frequency 
(fT), higher maximum oscillation frequency (fMAX), higher cutoff 
voltage, and smaller substrate losses. However, the III-V pro⁃
cess is not suitable for integrating large-scale digital and ana⁃
log circuits, so multiple discrete chips implemented by differ⁃
ent processes need to be integrated into the transceiver sys⁃
tem. As a result, the channel module size tends to be large, 
making it difficult to meet the half-wavelength spacing re⁃
quirements for THz array integration, which limits the perfor⁃
mance of THz RF array systems.

With the development of silicon-based integrated circuit 

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant Nos. 62101117 and 62188102, in part by ZTE In⁃
dustry-University-Institute Cooperation Funds, and in part by the Project 
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2021M700763 and 2022T150113.
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PA: power amplifier
QBB: Q-baseband

RF: radio frequency
Tx: transmitter

▲Figure 1. Block diagram of a typical Terahertz (THz) transmitter
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processes, the fT/fMAX of its transistors has been covered to 
the 300 GHz band[2], making it possible to design low-cost, 
highly integrated and small-size THz PAs based on advanced 
silicon-based processes. However, based on existing ad⁃
vanced silicon-based processes, there are still many chal⁃
lenges in designing high-performance PAs in the frequency 
band above 100 GHz[3]. First, the shrinking of the character⁃
istic size of the transistor causes the withstand voltage value 
of the transistor to decrease, so the supply voltage is limited, 
thereby limiting the output power of the PA. Second, when 
the operating frequency increases to more than 100 GHz, the 
loss of the passive structure increases due to the influence of 
skin effect and radiation effect, which further deteriorates 
the performance of silicon-based THz PA. Fig. 2 summarizes 
the output power of currently representative reported PAs, 
mainly based on bulk complementary metal oxide semicon⁃
ductor (CMOS) and silicon germanium (SiGe) processes[3]. It 
can be seen that the output power of silicon-based PAs drops 
sharply at above 100 GHz, and there is an urgent need to 
study high-performance silicon-based THz PAs.

To overcome the above difficulties, we have conducted re⁃
search on THz broadband low-loss single-ended-to-differential 
signal conversion baluns and gain-boosted PA cores, and de⁃
veloped a variety of 100–300 GHz silicon-based differential 
PAs, including 150 GHz, 220 GHz and 250 GHz PAs[5–7]. In 
addition, aiming at the development of broadband low-loss 
power combining techniques and high-efficiency miniaturized 
multi-way power combining structures, we design a 240 GHz 
three-stage cascode structured PA based on four-way zero-
degree transmission line power combining techniques[8].
2 Silicon-Based Differential THz PA

The development of high-performance silicon-based THz 
PAs is a key link in the practical process of THz communica⁃

tion and radar systems. To ensure that the transmitter has 
sufficient transmit power, it is critical to study the design of 
PAs with high output power, high gain, and miniaturization. 
When the operating frequency rises to the THz frequency 
band, the influence of circuit parasitic parameters is intensi⁃
fied, coupled with the influence of skin effect and others, the 
quality factor of passive devices is reduced, the circuit loss 
increases, and the working bandwidth deteriorates sharply. 
Conventional single-ended PAs have limited gain, output 
power, and efficiency in the THz band. Therefore, scholars 
have conducted extensive research on how to design and pro⁃
duce differential structured silicon-based THz PAs with high 
performance. According to Ref. [3], PAs based on silicon-
based processes currently can operate at frequencies up to 
300 GHz. In typical reports like Ref. [9], the PA shows a 3 dB 
bandwidth of 63 GHz (239–302 GHz) in small-signal opera⁃
tion and 94 GHz (223–317 GHz) when saturated, and the PA 
is fabricated in an experimental 130 nm SiGe BiCMOS pro⁃
cess with fT/fMAX of 470/650 GHz.

Differential combining is the commonest power combining 
method in THz PA designs, and differential power combining 
structures include LC baluns, transformer baluns, and March⁃
and baluns. LC baluns consist of lumped component inductors 
and capacitors, making them easy to design. In the microwave 
and millimeter wave bands, LC baluns are less used due to the 
larger inductor size. When operating frequencies are above 
100 GHz, the inductor size is greatly reduced as the wave⁃
length decreases, making the LC balun suitable for on-chip 
differential power combining. Transformer baluns are widely 
used in the millimeter wave circuit design, by changing the 
size, spacing, and linewidth of the primary and secondary 
coils that make up the transformer, and the operating band, 
coupling coefficient, and bandwidth can be changed to 
achieve single-ended-to-differential signal conversion. Trans⁃
former baluns have the characteristics of small size, high order, 
wide bandwidth, many adjustable parameters, and strong design 
flexibility. However, in the THz frequency band, limited by the 
design rules of the chip processing process, the transformer 
balun is small in size, and the parasitic parameters and losses 
are often larger. The coils that make up Marchand baluns are 
half a wavelength in size and are larger in the lower frequency 
bands, usually reduced in area by spiral layouts. In the THz 
band, Marchand baluns, benefiting from a drastically reduced 
operating wavelength, often have the advantage of a moderate 
size and excellent RF performance.
2.1 150 GHz PA Based on LC Balun

The THz band has become a popular candidate for next-
generation wireless communications due to its extremely rich 
spectrum resources. The D-band (110 – 170 GHz) is located 
in the THz low-frequency band, and there is an atmospheric 
window in the frequency range of 120 – 160 GHz. The wire⁃
less propagation path loss is small, so it is suitable for prelimi⁃▲Figure 2. Research status of Terahertz (THz) power amplifiers (PAs) 

based on bulk CMOS and SiGe process[3]
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nary verification of THz communication systems. As one of the 
important components in the communication transceiver, the 
PA directly restricts the performance of the entire transceiver.

Fig. 3 shows a 150 GHz differential structured PA based on 
a commercial 130 nm SiGe BiCMOS process[6]. Common-
emitter topology amplifiers have high power-added efficiency, 
but in the 150 GHz band, differential amplifiers based on 
common-emitter structures have lower single-stage gain due to 
the large decrease in the intrinsic gain of the transistor, and 
usually need to cascade four to five stages to obtain a small-
signal gain of more than 20 dB. Therefore, the PA usually 
adopts a cascode structure. In order to further increase the 
gain of a single-stage cascode amplifier core, inductors L1 and 
L2 shown in Fig. 3 are introduced to the base of the common-
base structure transistor. The base decoupling capacitor of the 
common-base transistor in a single-ended cascode amplifier 
will introduce an additional parasitic signal low impedance 
path to the RF ground, and the introduction of this pole also 
brings about stability issues, so the PA uses a differential 
structure. In addition, the size of the transistors in the PA is 
multiplied in the output direction to increase the power han⁃
dling capability of the last stage and guarantee the low power 
performance of the PA.

For easy testing and easy connection to the pre-mixer and 
post-antenna, the amplifier has single-ended ground-signal-
ground (GSG) RF PADs for both input and output. The core of 
the amplifier is differential, so a low-loss single-ended-to-
differential signal conversion structure is required at the input 
and output ports of the amplifier. As shown in Fig. 3, LC baluns 
are used for single-ended and differential signal conversion at 
the input and output ports of the amplifier, where the inductor 
consists of microstrip lines. When operating at 150 GHz, the 
differential ports of the on-chip LC balun will have a phase im⁃
balance problem, so the phase compensation lines TL4 and 
TL11 shown in Fig. 3 are introduced to achieve a good balance 

performance at the differential ports.
The chip micrograph of the 150 GHz PA is shown in Fig. 4, 

and the simulation and measured results for the small-signal 
gain and saturated output power of this PA are shown in Fig. 5. 

▲Figure 3. Schematic of the 150 GHz PA[6]

IMN: input matching network      PA: power amplifier     TL: transmission line

▲Figure 4. Die photo of the 150 GHz power amplifier (PA)

▲Figure 5. Simulated and measured results of the 150 GHz power am⁃
plifier (PA)[6]
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In the 140–160 GHz band, the small-signal gain of the ampli⁃
fier is measured to be larger than 15 dB, reaching a maximum 
of 22.7 dB at 152 GHz. Meanwhile, the test shows that the PA 
obtains a maximum output power at the frequency of 148 GHz, 
where the power value is 14 dBm, and the 3 dB bandwidth of 
the output power reaches 16 GHz.
2.2 220 GHz PA Based on Marchand Balun

The 220 GHz band is currently a hot spot band, and there 
are many studies on this frequency band, including ultra-high-
speed communications, high-resolution radar, etc. Among 
them, the PA is one of the key components that restrict the 
performance of the 220 GHz RF system. Achieving high per⁃
formance PA in the 220 GHz band faces two major difficul⁃
ties: one is that the operating frequency is close to the fT/fMAX 
of the transistor, resulting in a steep gain drop in the active de⁃
vice, and the other is the low quality factor and large insertion 
loss of the passive device in the THz band.

As shown in Figs. 6 and 7, the PA is a fully differential three-
stage cascode structure[7], and the amplification unit using the 
cascode structure can reduce the number of stages, thereby re⁃
ducing the passive loss caused by the inter-stage matching net⁃
work, and the cascode topology also has better reverse isolation. 
The input and output networks are based on stacked Marchand 
baluns for single-ended-to-differential signal conversion. DC 
feed is performed through the center tap of the Marchand 
balun’s secondary coil. In addition, some series transmission 
lines and parallel capacitors participate in impedance matching 
of the input and output networks. In the inner-stage impedance 
matching network, thanks to the fully differential structure, the 
intersection of the parallel transmission lines is an RF virtual 
point that can be used for DC feeding.

The measured results show the small-signal gain of the am⁃
plifier exceeds 20 dB, and the 3 dB bandwidth covers 204–
239 GHz. Fig. 8 shows the simulated and measured large-
signal performance of this PA, with saturated output power ex⁃
ceeding 9 dBm in the 200–216 GHz band.

3 Silicon-Based THz PA Based on Multi-
way Power Combining Techniques
In silicon-based THz systems, due to the large connection 

loss of the RF interface (the connection between the RF out⁃
put port and the antenna), the solution of integrated antenna-
on-chip is often used. Limited by the thickness of the silicon 
process’s metal layer, the on-chip antenna has a limited gain 
of about a few dBi. Therefore, as the device is directly con⁃

▲Figure 6. Schematic of the 220 GHz power amplifier (PA)[7]

TL: transmission line

▲Figure 7. Die photo of the 220 GHz power amplifier (PA)[7]

▲Figure 8. Simulated and measured results of the 220 GHz power am⁃
plifier (PA)[7]
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nected to the on-chip antenna in the RF system, the output 
power of the PA directly determines the transmission distance 
of the system[10]. However, the ability of transistors to deliver 
power in the THz band in silicon-based processes is limited, 
and power combining techniques must be employed to achieve 
higher output power.

Power combining techniques in THz bands include free-
space power combining and on-chip power combining. Free-
space power combining techniques can be co-designed with 
the on-chip antenna to generate high radiated power in equiva⁃
lent space through array design[11]. However, on-chip antennas 
based on silicon-based processes are less efficient, and on-
chip antennas tend to be larger in area and higher in cost. On-
chip power combining techniques include the direct use of 
multiple transistors in parallel or multiple transistors stacking, 
and passive power synthesis techniques based on multi-way 
PAs. Transistor parallel connection is a current-based power 
combining method and transistor stacking is a voltage-based 
power combining method, and a better power combining effi⁃
ciency can only be achieved when the current and voltage 
through each transistor are in phase. While the THz frequency 
is high and the wavelength is short, the connection line of tens 
of microns will introduce a large phase difference, so the num⁃
ber of transistors connected in parallel or stacked is limited. 
Passive multi-way power combining is to design a passive 
power combining network inside the chip and add the output 
power of the multi-way PAs with high efficiency to improve 
the final output power.

There are three main types of passive on-chip power com⁃
bining techniques, namely power combining techniques based 

on a Wilkinson power divider, transformer-based power com⁃
bining techniques, and zero-degree power combining tech⁃
niques based on transmission lines. The power combining 
technique based on Wilkinson power dividers requires a pair 
of quarter-wavelength transmission lines that occupy a large 
area and are not suitable for on-chip power combining. At the 
same time, limited by the quarter-wavelength line, its band⁃
width is relatively narrow. When the operating frequency devi⁃
ates from the design frequency or there is a large parasitic, the 
isolation and matching between the ports will deteriorate sig⁃
nificantly. Power synthesis based on transformers mainly in⁃
cludes voltage combining and current combining. For the 
transformer, common-mode signals and noise can be transmit⁃
ted to the output due to parasitic capacitance between coils. 
When frequencies rise above 200 GHz, capacitance parasitic 
increases significantly, severely limiting transformers to be 
used in this frequency band, where Marchand balun’s 
common-mode conversion is much lower than that of trans⁃
formers, resulting in a smaller insertion loss. Zero-degree 
power combining techniques directly synthesize the current of 
multiple PAs to obtain high output power. And in the fre⁃
quency band above 200 GHz, the T-type zero-degree power 
combining network has a compact size and low insertion loss.

Combining the characteristics of the above-mentioned on-
chip power combining techniques, we have designed a three-
stage differential cascode structure PA based on a four-way 
zero-degree power combining architecture, as depicted in Fig. 
9[8]. As illustrated in Fig. 10, the PA’s power combining net⁃
work consists of an improved four-way zero-degree power com⁃
bining network and a three-conductor Marchand balun, which 

▲Figure 9. Schematic of the 240 GHz four-way power combining PA[8]
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can achieve wideband impedance matching while completing 
high-efficiency power synthesis. Traditional zero-degree 
power combining networks use quarter-wavelength lines and 
bypass capacitors for DC feeding, which limits the operating 
bandwidth of the PA.

The zero-degree power combing network used by the PA con⁃
tains RF virtual points for DC feed, as shown by the microstrip 
lines TL3 in Fig. 9, which is formed by the central point of the 
microstrip lines connected in parallel between differential 
ports. The advantage of such a design is that the broadband 
matching characteristics of the output network are guaranteed. 
In addition, to further increase the bandwidth of the output 
power combining network, we use a wideband Marchand balun 
based on a three-conductor coupling line as shown by the or⁃
ange dotted box in Fig. 9 in the output differential-to-single-
ended conversion network. When the operating frequency rises 
to 200 GHz, the lumped components with low figure of merit re⁃
sult in high insertion loss, and a broadband matching network 
with multi-resonant cavities can only be achieved by distrib⁃
uted networks. The three-conductor Marchand balun in the out⁃
put impedance matching network achieves wideband matching 
with dual-LC resonances by absorbing two resonant networks 
into the coupling structure.

At the input of the PA, unlike the common passive or active 
power division structure, the PA uses a folded 1-to-4 power 
distribution network as shown in Fig. 9, where the RF ground 
of the secondary coil that makes up the balun is achieved by 
the metal-oxide-metal (MOM) capacitors Cc. The metal-
insulator-metal (MIM) capacitors provided in the process have 
a low quality factor in the frequency band above 200 GHz, so 
the capacitors used in the PA design are all MOM capacitors. 
MOM capacitors are made of multilayer metal crossings and 
stacks for high design flexibility.

The chip micrograph of the designed PA is shown in Fig. 10. 
Due to the folded input power distribution network and the 
compact output power combining network, the core area of 
the PA is only 770×280 μm2. As shown in Fig. 11, the mea⁃
sured results show that the small-signal gain of the PA ex⁃

ceeds 15 dB and the 3 dB bandwidth is larger than 50 GHz. 
In the 210 – 250 GHz band, the PA is tested to have satu⁃
rated output power of more than 13 dBm.
4 Conclusions

Due to the abundant spectrum resources of the THz fre⁃
quency band, application scenarios, such as high-speed commu⁃
nication and high-resolution radar with this frequency band, 
have become research hotspots. The rapid development of 
silicon-based processes provides new low-cost solutions beyond 
compound processes for these studies. The above systems have 
high demands on the performance of PAs such as output power 
and RF bandwidth. Combined with several PAs designed in our 
lab in the THz band, this article summarizes the common struc⁃
ture and design methods of PAs in the THz band.

References
[1] KISSINGER D, KAHMEN G, WEIGEL R. Millimeter-wave and terahertz trans⁃

ceivers in SiGe BiCMOS technologies [J]. IEEE transactions on microwave 
theory and techniques, 2021, 69(10): 4541 – 4560. DOI: 10.1109/
TMTT.2021.3095235

[2] RÜCKER H, HEINEMANN B, FOX A. Half-terahertz SiGe BiCMOS technol⁃
ogy [C]//The 12th Topical Meeting on Silicon Monolithic Integrated Circuits in 
RF Systems. IEEE, 2012: 133–136. DOI: 10.1109/SiRF.2012.6160164

[3] WANG H, WANG F, NGUYEN H T, et al. Power Amplifiers Performance Sur⁃
vey 2000-Present [EB/OL]. [2023-04-16]. https://gems.ece.gatech.edu/PA_sur⁃
vey.html

[4] LI X C, CHEN W H, ZHOU P G, et al. A 250–310 GHz power amplifier with 
15 dB peak gain in 130 nm SiGe BiCMOS process for terahertz wireless system 
[J]. IEEE transactions on terahertz science and technology, 2022, 12(1): 1–12. 
DOI: 10.1109/TTHZ.2021.3099057

[5] LI H B, CHEN J X, HOU D B, et al. A 250 GHz differential SiGe amplifier with 
21.5 dB gain for sub-THz transmitters [J]. IEEE transactions on terahertz sci⁃

▲Figure 10. Die photo of the 240 GHz four-way power combining PA[8]

▲Figure 11. Die photo of the 240 GHz four-way power combining PA[8]

OP: output power     PAE: power added efficiency     RF: radio frequency
RF frequency/GHz

20

10

0

-10

10

8

6

4

2

0

PA
E ma

x/%

Psa
t/dB

m, 
OP

1dB
/dB

m

190 200 210 220 230 240 250 260 270 280

Psat (Meas.)
OP1dB (Meas.)
PAEmax (Meas.)

Psat (Sim.)
OP1dB (Sim.)
PAEmax (Sim.)

93



ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

CHEN Jixin, ZHOU Peigen, YU Jiayang, LI Zekun, LI Huanbo, PENG Lin 

Review   Research Towards Terahertz Power Amplifiers in Silicon-Based Process

ence and technology, 2020, 10(6): 624 – 633. DOI: 10.1109/
TTHZ.2020.3019361

[6] ZHOU P G, CHEN J X, YAN P P, et al. A 150 GHz transmitter with 12 dBm 
peak output power using 130 nm SiGe: C BiCMOS process [J]. IEEE transac⁃
tions on microwave theory and techniques, 2020, 68(7): 3056 – 3067. DOI: 
10.1109/TMTT.2020.2989112

[7] LI Z K, CHEN J X, LI H B, et al. A 220 GHz power amplifier with 22.5 dB gain 
and 9 dBm Psat in 130 nm SiGe [J]. IEEE microwave and wireless components 
letters, 2021, 31(10): 1166–1169. DOI: 10.1109/LMWC.2021.3105611

[8] YU J Y, CHEN J X, ZHOU P G, et al. A 211-to-263 GHz dual-LC-tank-based 
broadband power amplifier with 14.7 dBm PSAT and 16.4 dB peak gain in 
130 nm SiGe BiCMOS [J]. IEEE journal of solid-state circuits, 2023, 58(2): 
332–344. DOI: 10.1109/JSSC.2022.3192043

[9] BÜCHER T, GRZYB J, HILLGER P, et al. A broadband 300 GHz power ampli⁃
fier in a 130 nm SiGe BiCMOS technology for communication applications [J]. 
IEEE journal of solid-state circuits, 2022, 57(7): 2024 – 2034. DOI: 10.1109/
JSSC.2022.3162079

[10] LI X C, CHEN W H, LI S Y, et al. A high-efficiency 142–182 GHz SiGe BiC⁃
MOS power amplifier with broadband slotline-based power combining tech⁃
nique [J]. IEEE journal of solid-state circuits, 2022, 57(2): 371 – 384. DOI: 
10.1109/JSSC.2021.3107428

[11] ATESAL Y A, CETINONERI B, CHANG M, et al. Millimeter-wave wafer-
scale silicon BiCMOS power amplifiers using free-space power combining [J]. 
IEEE transactions on microwave theory and techniques, 2011, 59(4): 954 –
965. DOI: 10.1109/TMTT.2011.2108313

[12] YORK R A. Some considerations for optimal efficiency and low noise in large 
power combiners [J]. IEEE transactions on microwave theory and techniques, 
2001, 49(8): 1477–1482. DOI: 10.1109/22.939929

[13] PARK D W, UTOMO D R, LAM B H, et al. A 230–260 GHz wideband and 
high-gain amplifier in 65 nm CMOS based on dual-peak Gmax-core [J]. IEEE 
journal of solid-state circuits, 2019, 54(6): 1613 – 1623. DOI: 10.1109/
JSSC.2019.2899515

[14] SARMAH N, AUFINGER K, LACHNER R, et al. A 200 – 225 GHz SiGe 
power amplifier with peak Psat of 9.6 dBm using wideband power combination 
[C]//The 42nd European Solid-State Circuits Conference. IEEE, 2016: 193–
196. DOI: 10.1109/ESSCIRC.2016.7598275

[15] EISSA M H, MALIGNAGGI A, KISSINGER D. A 13.5 dBm 200–255 GHz 4-
way power amplifier and frequency source in 130 nm BiCMOS [J]. IEEE solid-
state circuits letters, 2019, 2(11): 268 – 271. DOI: 10.1109/
LSSC.2019.2951689

[16] LI X C, CHEN W H, ZHOU P G, et al. A 250 – 310 GHz power amplifier 
with 15 dB peak gain in 130 nm SiGe BiCMOS process for terahertz wireless 
system [J]. IEEE transactions on terahertz science and technology, 2022, 12
(1): 1–12. DOI: 10.1109/TTHZ.2021.3099057

[17] BUCHER T, GRZYB J, HILLGER P, et al. A 239–298 GHz power amplifier 
in an advanced 130nm SiGe BiCMOS technology for communications applica⁃
tions [C]//The 47th European Solid State Circuits Conference (ESSCIRC). 
IEEE, 2021. DOI:10.1109/ESSCIRC53450.2021.9567853

[18] YOON D, SEO M G, SONG K, et al. 260 GHz differential amplifier in SiGe 
heterojunction bipolar transistor technology [J]. Electronics letters, 2017, 53
(3): 194–196. DOI: 10.1049/el.2016.3882

[19] KUCHARSKI M, NG H J, KISSINGER D. An 18 dBm 155– 180 GHz SiGe 
power amplifier using a 4-way T-junction combining network [C]//The 45th Eu⁃
ropean Solid State Circuits Conference (ESSCIRC). IEEE, 2019: 333 – 336. 
DOI: 10.1109/ESSCIRC.2019.8902847

[20] STÄRKE P, CARTA C, ELLINGER F. High-linearity 19 dB power amplifier 
for 140–220 GHz, saturated at 15 dBm, in 130 nm SiGe [J]. IEEE microwave 
and wireless components letters, 2020, 30(4): 403 – 406. DOI: 10.1109/
LMWC.2020.2978397

[21] PHILIPPE B, REYNAERT P. 24.7 A 15 dBm 12.8% PAE compact D-band 
power amplifier with two-way power combining in 16 nm FinFET CMOS 

[C]//IEEE International Solid State Circuits Conference (ISSCC). IEEE, 
2020: 374–376. DOI: 10.1109/ISSCC19947.2020.9062920

[22] BAMERI H, MOMENI O. An embedded 200 GHz power amplifier with 9.4 
dBm saturated power and 19.5 dB gain in 65 nm CMOS [C]//Proceedings of 
2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 
2020: 191–194. DOI: 10.1109/RFIC49505.2020.9218441

Biographies
CHEN Jixin received his BS degree in radio engineering from Southeast Uni⁃
versity, China in 1998, and MS and PhD degrees from Southeast University in 
2002 and 2006, respectively, all in electromagnetic field and microwave tech⁃
niques. Since 1998, he has been with the Sate Key Laboratory of Millimeter 
Waves, Southeast University, and is currently a professor of School of Informa⁃
tion Science and Engineering. His current research interests include microwave 
and millimeter-wave circuit design and MMIC design. He has authored and co-
authored more than 100 papers and presented invited papers at ICMMT2016, 
IMWS2012, and GSMM2011. He is the winner of 2016 Keysight Early Career 
Professor Award. He has served as the TPC Co-chair of HSIC2012, UC⁃
MMT2012, LOC Co-chair of APMC2015, Session Co-chair of iWAT2011, 
ISSSE2010, and APMC2007, and a reviewer for IEEE MTT and IEEE MWCL.

ZHOU Peigen (pgzhouseu@seu.edu.cn) received his BS degree in radio engi⁃
neering in 2015 and PhD degree in electromagnetic field and microwave tech⁃
niques in 2020, both from Southeast University, China. Since 2021, he has 
been with the State Key Laboratory of Millimeter Waves, Southeast University, 
and is currently an assistant researcher of the School of Information Science 
and Engineering. His research interests include silicon-based millimeter-wave/
THz on-chip wireless communication/radar phased-array transceivers.

YU Jiayang is currently working toward his PhD degree in the School of Infor⁃
mation Science and Engineering, State Key Laboratory of Millimeter Waves, 
Southeast University, China. His current research interests include millimeter-
wave/terahertz integrated circuits for radar and high speed communication.

LI Zekun received his BS degree from the School of Information Science and 
Engineering, Southeast University, China in 2018, where he is currently pursu⁃
ing his PhD degree. His current research focuses on silicon-based millimeter-
wave and terahertz integrated circuits and systems for high-speed wireless com⁃
munication and radar.

LI Huanbo received his BS degree from the School of Information Science and 
Engineering and PhD degree in electromagnetic field and microwave tech⁃
niques from Southeast University, China in 2016 and 2021, respectively. His 
current research focuses on silicon based mm-wave and terahertz integrated cir⁃
cuits and systems for high-speed wireless communication and radar imaging.

PENG Lin received his BS degree in information engineering and MS degree 
in electromagnetic field and microwave techniques from Nanjing University of 
Science and Technology, China in 2004 and 2006, respectively. Since 2006, he 
has been with ZTE Corporation, where he is mainly engaged in wireless commu⁃
nications. His current research interests include beyond-5G and 6G technolo⁃
gies, millimeter-wave and terahertz communication, and intelligent reflecting 
surface for wireless applications.

94



The 1st Youth Expert Committee 

Director

Deputy Director

Members (Surname in Alphabetical Order)

CAO Jin

CHEN Li

CHEN Qimei

CHEN Shuyi

CHEN Wei

GUAN Ke	

HAN Kaifeng

HE Zi

HU Jie

HUANG Chen

LI Ang

LIU Chunsen

LIU Fan

LIU Junyu

LU Dan

LU Youyou

NING Zhaolong

QI Liang

QIN Xiaoqi

QIN Zhijin

SHI Yinghuan

WANG Jingjing

WANG Xinggang

WANG Yongqiang

WEN Miaowen

WU Yongpeng

XIA Wenchao

XU Mengwei

XU Tianheng

YANG Chuanchuan

YIN Haifan

YU Jihong	

ZHANG Jiao

ZHANG Yuchao

ZHANG Jiayi

ZHAO Yuda

ZHOU Yi

ZHU Bingcheng

Xidian University
University of Science and Technology of China
Wuhan University
Harbin Institute of Technology
Beijing Jiaotong University
Beijing Jiaotong University
China Academy of Information and Communications Technology
Nanjing University of Science and Technology
University of Electronic Science and Technology of China
Purple Mountain Laboratories
Xi’an Jiaotong University
Fudan University
Southern University of Science and Technology
Xidian University
Magazine House of ZTE Communications
Tsinghua University
Chongqing University of Posts and Telecommunications
Shanghai Jiao Tong University
Beijing University of Posts and Telecommunications
Tsinghua University
Nanjing University
Beihang University
Huazhong University of Science and Technology
Tianjin University
South China University of Technology
Shanghai Jiao Tong University
Nanjing University of Posts and Telecommunications
Beijing University of Posts and Telecommunications
Shanghai Advanced Research Institute, Chinese Academy of Sciences
Peking University
Huazhong University of Science and Technology
Beijing Institute of Technology
Beijing University of Posts and Telecommunications
Beijing University of Posts and Telecommunications
Beijing Jiaotong University
Zhejiang University
Southwest Jiaotong University
Southeast University

CHEN Wei, Beijing Jiaotong University

QIN Xiaoqi, Beijing University of Posts and Telecommunications   

LU Dan, Magazine House of ZTE Communications

for Promoting Industry-University-Institute Cooperation



ZTE Communications has been indexed in the following databases:

ZTE COMMUNICATIONS
Vol. 21 No. 2  (Issue 83)
Quarterly
First English Issue Published in 2003

Supervised by:
Anhui Publishing Group

Sponsored by:
Time Publishing and Media Co., Ltd.
Shenzhen Guangyu Aerospace Industry Co., Ltd.

Published by:
Anhui Science & Technology Publishing House

Edited and Circulated (Home and Abroad) by:
Magazine House of ZTE Communications

Staff Members:
General Editor: WANG Xiyu
Editor-in-Chief: JIANG Xianjun
Executive Editor-in-Chief: HUANG Xinming
Editorial Director: LU Dan
Editor-in-Charge: ZHU Li
Editors: REN Xixi, XU Ye, YANG Guangxi
Producer: XU Ying
Circulation Executive: WANG Pingping
Assistant: WANG Kun

• Abstract Journal
• Cambridge Scientific Abstracts (CSA)
• China Science and Technology Journal Database
• Chinese Journal Fulltext Databases
• Index of Copurnicus
• Ulrich’s Periodicals Directory
• Wanfang Data
• WJCI 2022

Industry Consultants:

DUAN Xiangyang, GAO Yin, HU Liujun, HUA Xinhai, LIU Xinyang, LU Ping, 
SHI Weiqiang, TU Yaofeng, WANG Huitao, XIONG Xiankui, ZHAO Yajun, 
ZHAO Zhiyong, ZHU Xiaoguang

Editorial Correspondence:
Add: 12F Kaixuan Building, 329 Jinzhai Road,
         Hefei 230061, P. R. China
Tel: +86-551-65533356
Email: magazine@zte.com.cn
Website: http://zte.magtechjournal.com

Annual Subscription: RMB 120
Printed by:
Hefei Tiancai Color Printing Company
Publication Date: June 25, 2023

China Standard Serial Number:
-


	中兴通讯技术（英文版）
	目次
	Special Topic
	Editorial
	Intelligent 6G Wireless Network with Multi-Dimensional Information Perception
	Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions
	Content Popularity Prediction via Federated Learning in Cache-Enabled Wireless Networks
	Federated Learning for 6G: A Survey From Perspective of Integrated Sensing, Communication and Computation
	Future Vision on Artificial Intelligence Assisted Green Energy Efficiency Network
	Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing
	Multi-User MmWave Beam Tracking via Multi-Agent Deep Q-Learning
	RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning
	SST-V: A Scalable Semantic Transmission Framework for Video
	UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network
	Research Towards Terahertz Power Amplifiers in Silicon-Based Process


	Contents
	Column



